This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of iotanul using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotanul2 | |- ( -. E. y { x | ph } = { y } -> ( iota x ph ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota | |- ( iota x ph ) = U. { w | { x | ph } = { w } } |
|
| 2 | n0 | |- ( U. { w | { x | ph } = { w } } =/= (/) <-> E. v v e. U. { w | { x | ph } = { w } } ) |
|
| 3 | eluni | |- ( v e. U. { w | { x | ph } = { w } } <-> E. y ( v e. y /\ y e. { w | { x | ph } = { w } } ) ) |
|
| 4 | vex | |- y e. _V |
|
| 5 | sneq | |- ( w = y -> { w } = { y } ) |
|
| 6 | 5 | eqeq2d | |- ( w = y -> ( { x | ph } = { w } <-> { x | ph } = { y } ) ) |
| 7 | 4 6 | elab | |- ( y e. { w | { x | ph } = { w } } <-> { x | ph } = { y } ) |
| 8 | 7 | biimpi | |- ( y e. { w | { x | ph } = { w } } -> { x | ph } = { y } ) |
| 9 | 8 | adantl | |- ( ( v e. y /\ y e. { w | { x | ph } = { w } } ) -> { x | ph } = { y } ) |
| 10 | 9 | eximi | |- ( E. y ( v e. y /\ y e. { w | { x | ph } = { w } } ) -> E. y { x | ph } = { y } ) |
| 11 | 3 10 | sylbi | |- ( v e. U. { w | { x | ph } = { w } } -> E. y { x | ph } = { y } ) |
| 12 | 11 | exlimiv | |- ( E. v v e. U. { w | { x | ph } = { w } } -> E. y { x | ph } = { y } ) |
| 13 | 2 12 | sylbi | |- ( U. { w | { x | ph } = { w } } =/= (/) -> E. y { x | ph } = { y } ) |
| 14 | 13 | necon1bi | |- ( -. E. y { x | ph } = { y } -> U. { w | { x | ph } = { w } } = (/) ) |
| 15 | 1 14 | eqtrid | |- ( -. E. y { x | ph } = { y } -> ( iota x ph ) = (/) ) |