This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition that allows to represent "the unique element such that ph " with a class expression A . (Contributed by NM, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iota2df.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| iota2df.2 | ⊢ ( 𝜑 → ∃! 𝑥 𝜓 ) | ||
| iota2df.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| iota2df.4 | ⊢ Ⅎ 𝑥 𝜑 | ||
| iota2df.5 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
| iota2df.6 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | ||
| Assertion | iota2df | ⊢ ( 𝜑 → ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 2 | iota2df.2 | ⊢ ( 𝜑 → ∃! 𝑥 𝜓 ) | |
| 3 | iota2df.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | iota2df.4 | ⊢ Ⅎ 𝑥 𝜑 | |
| 5 | iota2df.5 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
| 6 | iota2df.6 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) | |
| 8 | 7 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( ( ℩ 𝑥 𝜓 ) = 𝑥 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |
| 9 | 3 8 | bibi12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( ( 𝜓 ↔ ( ℩ 𝑥 𝜓 ) = 𝑥 ) ↔ ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) ) |
| 10 | iota1 | ⊢ ( ∃! 𝑥 𝜓 → ( 𝜓 ↔ ( ℩ 𝑥 𝜓 ) = 𝑥 ) ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ℩ 𝑥 𝜓 ) = 𝑥 ) ) |
| 12 | nfiota1 | ⊢ Ⅎ 𝑥 ( ℩ 𝑥 𝜓 ) | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑥 𝜓 ) ) |
| 14 | 13 6 | nfeqd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑥 𝜓 ) = 𝐵 ) |
| 15 | 5 14 | nfbid | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |
| 16 | 1 9 11 4 6 15 | vtocldf | ⊢ ( 𝜑 → ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |