This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition that allows to represent "the unique element such that ph " with a class expression A . (Contributed by NM, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iota2df.1 | ||
| iota2df.2 | |||
| iota2df.3 | |||
| iota2df.4 | |||
| iota2df.5 | |||
| iota2df.6 | |||
| Assertion | iota2df |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 | ||
| 2 | iota2df.2 | ||
| 3 | iota2df.3 | ||
| 4 | iota2df.4 | ||
| 5 | iota2df.5 | ||
| 6 | iota2df.6 | ||
| 7 | simpr | ||
| 8 | 7 | eqeq2d | |
| 9 | 3 8 | bibi12d | |
| 10 | iota1 | ||
| 11 | 2 10 | syl | |
| 12 | nfiota1 | ||
| 13 | 12 | a1i | |
| 14 | 13 6 | nfeqd | |
| 15 | 5 14 | nfbid | |
| 16 | 1 9 11 4 6 15 | vtocldf |