This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition that allows to represent "the unique element such that ph " with a class expression A . (Contributed by NM, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iota2df.1 | |- ( ph -> B e. V ) |
|
| iota2df.2 | |- ( ph -> E! x ps ) |
||
| iota2df.3 | |- ( ( ph /\ x = B ) -> ( ps <-> ch ) ) |
||
| iota2df.4 | |- F/ x ph |
||
| iota2df.5 | |- ( ph -> F/ x ch ) |
||
| iota2df.6 | |- ( ph -> F/_ x B ) |
||
| Assertion | iota2df | |- ( ph -> ( ch <-> ( iota x ps ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 | |- ( ph -> B e. V ) |
|
| 2 | iota2df.2 | |- ( ph -> E! x ps ) |
|
| 3 | iota2df.3 | |- ( ( ph /\ x = B ) -> ( ps <-> ch ) ) |
|
| 4 | iota2df.4 | |- F/ x ph |
|
| 5 | iota2df.5 | |- ( ph -> F/ x ch ) |
|
| 6 | iota2df.6 | |- ( ph -> F/_ x B ) |
|
| 7 | simpr | |- ( ( ph /\ x = B ) -> x = B ) |
|
| 8 | 7 | eqeq2d | |- ( ( ph /\ x = B ) -> ( ( iota x ps ) = x <-> ( iota x ps ) = B ) ) |
| 9 | 3 8 | bibi12d | |- ( ( ph /\ x = B ) -> ( ( ps <-> ( iota x ps ) = x ) <-> ( ch <-> ( iota x ps ) = B ) ) ) |
| 10 | iota1 | |- ( E! x ps -> ( ps <-> ( iota x ps ) = x ) ) |
|
| 11 | 2 10 | syl | |- ( ph -> ( ps <-> ( iota x ps ) = x ) ) |
| 12 | nfiota1 | |- F/_ x ( iota x ps ) |
|
| 13 | 12 | a1i | |- ( ph -> F/_ x ( iota x ps ) ) |
| 14 | 13 6 | nfeqd | |- ( ph -> F/ x ( iota x ps ) = B ) |
| 15 | 5 14 | nfbid | |- ( ph -> F/ x ( ch <-> ( iota x ps ) = B ) ) |
| 16 | 1 9 11 4 6 15 | vtocldf | |- ( ph -> ( ch <-> ( iota x ps ) = B ) ) |