This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in Schechter p. 51. (Contributed by NM, 9-Sep-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intasym | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ 𝑅 | |
| 2 | relin2 | ⊢ ( Rel ◡ 𝑅 → Rel ( 𝑅 ∩ ◡ 𝑅 ) ) | |
| 3 | ssrel | ⊢ ( Rel ( 𝑅 ∩ ◡ 𝑅 ) → ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ I ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ I ) ) |
| 5 | elin | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) ) | |
| 6 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 10 | df-br | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) | |
| 11 | 9 10 | bitr3i | ⊢ ( 𝑦 𝑅 𝑥 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) |
| 12 | 6 11 | anbi12i | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) ) |
| 13 | 5 12 | bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) |
| 14 | df-br | ⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) | |
| 15 | 8 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 16 | 14 15 | bitr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I ↔ 𝑥 = 𝑦 ) |
| 17 | 13 16 | imbi12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ I ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 18 | 17 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ I ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 19 | 4 18 | bitri | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |