This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in Schechter p. 51. (Contributed by NM, 9-Sep-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intasym |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ||
| 2 | relin2 | ||
| 3 | ssrel | ||
| 4 | 1 2 3 | mp2b | |
| 5 | elin | ||
| 6 | df-br | ||
| 7 | vex | ||
| 8 | vex | ||
| 9 | 7 8 | brcnv | |
| 10 | df-br | ||
| 11 | 9 10 | bitr3i | |
| 12 | 6 11 | anbi12i | |
| 13 | 5 12 | bitr4i | |
| 14 | df-br | ||
| 15 | 8 | ideq | |
| 16 | 14 15 | bitr3i | |
| 17 | 13 16 | imbi12i | |
| 18 | 17 | 2albii | |
| 19 | 4 18 | bitri |