This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in Schechter p. 51. (Contributed by NM, 9-Sep-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intasym | |- ( ( R i^i `' R ) C_ _I <-> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' R |
|
| 2 | relin2 | |- ( Rel `' R -> Rel ( R i^i `' R ) ) |
|
| 3 | ssrel | |- ( Rel ( R i^i `' R ) -> ( ( R i^i `' R ) C_ _I <-> A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) ) ) |
|
| 4 | 1 2 3 | mp2b | |- ( ( R i^i `' R ) C_ _I <-> A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) ) |
| 5 | elin | |- ( <. x , y >. e. ( R i^i `' R ) <-> ( <. x , y >. e. R /\ <. x , y >. e. `' R ) ) |
|
| 6 | df-br | |- ( x R y <-> <. x , y >. e. R ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | brcnv | |- ( x `' R y <-> y R x ) |
| 10 | df-br | |- ( x `' R y <-> <. x , y >. e. `' R ) |
|
| 11 | 9 10 | bitr3i | |- ( y R x <-> <. x , y >. e. `' R ) |
| 12 | 6 11 | anbi12i | |- ( ( x R y /\ y R x ) <-> ( <. x , y >. e. R /\ <. x , y >. e. `' R ) ) |
| 13 | 5 12 | bitr4i | |- ( <. x , y >. e. ( R i^i `' R ) <-> ( x R y /\ y R x ) ) |
| 14 | df-br | |- ( x _I y <-> <. x , y >. e. _I ) |
|
| 15 | 8 | ideq | |- ( x _I y <-> x = y ) |
| 16 | 14 15 | bitr3i | |- ( <. x , y >. e. _I <-> x = y ) |
| 17 | 13 16 | imbi12i | |- ( ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) <-> ( ( x R y /\ y R x ) -> x = y ) ) |
| 18 | 17 | 2albii | |- ( A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) <-> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
| 19 | 4 18 | bitri | |- ( ( R i^i `' R ) C_ _I <-> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |