This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a special case of a class abstraction. y may be free in ph and A , which can be thought of a ph ( y ) and A ( y ) . Typically, abrexex2 or abexssex can be used to satisfy the second hypothesis. (Contributed by NM, 28-Jul-2006) (Proof shortened by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intab.1 | ⊢ 𝐴 ∈ V | |
| intab.2 | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) } ∈ V | ||
| Assertion | intab | ⊢ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intab.1 | ⊢ 𝐴 ∈ V | |
| 2 | intab.2 | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) } ∈ V | |
| 3 | eqeq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝐴 ↔ 𝑥 = 𝐴 ) ) | |
| 4 | 3 | anbi2d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 5 | 4 | exbidv | ⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ↔ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 6 | 5 | cbvabv | ⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) } |
| 7 | 6 2 | eqeltri | ⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ∈ V |
| 8 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) | |
| 9 | 8 | nfab | ⊢ Ⅎ 𝑦 { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } |
| 10 | 9 | nfeq2 | ⊢ Ⅎ 𝑦 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } |
| 11 | eleq2 | ⊢ ( 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) ) | |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } → ( ( 𝜑 → 𝐴 ∈ 𝑥 ) ↔ ( 𝜑 → 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) ) ) |
| 13 | 10 12 | albid | ⊢ ( 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } → ( ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) ) ) |
| 14 | 7 13 | elab | ⊢ ( { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ∈ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ↔ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) ) |
| 15 | 19.8a | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝐴 ) → ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) | |
| 16 | 15 | ex | ⊢ ( 𝜑 → ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) ) |
| 17 | 16 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) ) |
| 18 | 1 | sbc6 | ⊢ ( [ 𝐴 / 𝑧 ] ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ↔ ∀ 𝑧 ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) ) |
| 19 | 17 18 | sylibr | ⊢ ( 𝜑 → [ 𝐴 / 𝑧 ] ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) |
| 20 | df-sbc | ⊢ ( [ 𝐴 / 𝑧 ] ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ↔ 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) |
| 22 | 14 21 | mpgbir | ⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ∈ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } |
| 23 | intss1 | ⊢ ( { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ∈ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } → ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ⊆ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) | |
| 24 | 22 23 | ax-mp | ⊢ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ⊆ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } |
| 25 | 19.29r | ⊢ ( ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → ∃ 𝑦 ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) | |
| 26 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝑧 = 𝐴 ) | |
| 27 | pm3.35 | ⊢ ( ( 𝜑 ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝐴 ∈ 𝑥 ) | |
| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝐴 ∈ 𝑥 ) |
| 29 | 26 28 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) |
| 30 | 29 | exlimiv | ⊢ ( ∃ 𝑦 ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) |
| 31 | 25 30 | syl | ⊢ ( ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) |
| 32 | 31 | ex | ⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) → ( ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 33 | 32 | alrimiv | ⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) → ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 34 | vex | ⊢ 𝑧 ∈ V | |
| 35 | 34 | elintab | ⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 36 | 33 35 | sylibr | ⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) → 𝑧 ∈ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ) |
| 37 | 36 | abssi | ⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ⊆ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } |
| 38 | 24 37 | eqssi | ⊢ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } |
| 39 | 38 6 | eqtri | ⊢ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) } |