This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993) (Proof shortened by Eric Schmidt, 17-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbc6.1 | ⊢ 𝐴 ∈ V | |
| Assertion | sbc6 | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc6.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbc6g | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) |