This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a special case of a class abstraction. y may be free in ph and A , which can be thought of a ph ( y ) and A ( y ) . Typically, abrexex2 or abexssex can be used to satisfy the second hypothesis. (Contributed by NM, 28-Jul-2006) (Proof shortened by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intab.1 | |- A e. _V |
|
| intab.2 | |- { x | E. y ( ph /\ x = A ) } e. _V |
||
| Assertion | intab | |- |^| { x | A. y ( ph -> A e. x ) } = { x | E. y ( ph /\ x = A ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intab.1 | |- A e. _V |
|
| 2 | intab.2 | |- { x | E. y ( ph /\ x = A ) } e. _V |
|
| 3 | eqeq1 | |- ( z = x -> ( z = A <-> x = A ) ) |
|
| 4 | 3 | anbi2d | |- ( z = x -> ( ( ph /\ z = A ) <-> ( ph /\ x = A ) ) ) |
| 5 | 4 | exbidv | |- ( z = x -> ( E. y ( ph /\ z = A ) <-> E. y ( ph /\ x = A ) ) ) |
| 6 | 5 | cbvabv | |- { z | E. y ( ph /\ z = A ) } = { x | E. y ( ph /\ x = A ) } |
| 7 | 6 2 | eqeltri | |- { z | E. y ( ph /\ z = A ) } e. _V |
| 8 | nfe1 | |- F/ y E. y ( ph /\ z = A ) |
|
| 9 | 8 | nfab | |- F/_ y { z | E. y ( ph /\ z = A ) } |
| 10 | 9 | nfeq2 | |- F/ y x = { z | E. y ( ph /\ z = A ) } |
| 11 | eleq2 | |- ( x = { z | E. y ( ph /\ z = A ) } -> ( A e. x <-> A e. { z | E. y ( ph /\ z = A ) } ) ) |
|
| 12 | 11 | imbi2d | |- ( x = { z | E. y ( ph /\ z = A ) } -> ( ( ph -> A e. x ) <-> ( ph -> A e. { z | E. y ( ph /\ z = A ) } ) ) ) |
| 13 | 10 12 | albid | |- ( x = { z | E. y ( ph /\ z = A ) } -> ( A. y ( ph -> A e. x ) <-> A. y ( ph -> A e. { z | E. y ( ph /\ z = A ) } ) ) ) |
| 14 | 7 13 | elab | |- ( { z | E. y ( ph /\ z = A ) } e. { x | A. y ( ph -> A e. x ) } <-> A. y ( ph -> A e. { z | E. y ( ph /\ z = A ) } ) ) |
| 15 | 19.8a | |- ( ( ph /\ z = A ) -> E. y ( ph /\ z = A ) ) |
|
| 16 | 15 | ex | |- ( ph -> ( z = A -> E. y ( ph /\ z = A ) ) ) |
| 17 | 16 | alrimiv | |- ( ph -> A. z ( z = A -> E. y ( ph /\ z = A ) ) ) |
| 18 | 1 | sbc6 | |- ( [. A / z ]. E. y ( ph /\ z = A ) <-> A. z ( z = A -> E. y ( ph /\ z = A ) ) ) |
| 19 | 17 18 | sylibr | |- ( ph -> [. A / z ]. E. y ( ph /\ z = A ) ) |
| 20 | df-sbc | |- ( [. A / z ]. E. y ( ph /\ z = A ) <-> A e. { z | E. y ( ph /\ z = A ) } ) |
|
| 21 | 19 20 | sylib | |- ( ph -> A e. { z | E. y ( ph /\ z = A ) } ) |
| 22 | 14 21 | mpgbir | |- { z | E. y ( ph /\ z = A ) } e. { x | A. y ( ph -> A e. x ) } |
| 23 | intss1 | |- ( { z | E. y ( ph /\ z = A ) } e. { x | A. y ( ph -> A e. x ) } -> |^| { x | A. y ( ph -> A e. x ) } C_ { z | E. y ( ph /\ z = A ) } ) |
|
| 24 | 22 23 | ax-mp | |- |^| { x | A. y ( ph -> A e. x ) } C_ { z | E. y ( ph /\ z = A ) } |
| 25 | 19.29r | |- ( ( E. y ( ph /\ z = A ) /\ A. y ( ph -> A e. x ) ) -> E. y ( ( ph /\ z = A ) /\ ( ph -> A e. x ) ) ) |
|
| 26 | simplr | |- ( ( ( ph /\ z = A ) /\ ( ph -> A e. x ) ) -> z = A ) |
|
| 27 | pm3.35 | |- ( ( ph /\ ( ph -> A e. x ) ) -> A e. x ) |
|
| 28 | 27 | adantlr | |- ( ( ( ph /\ z = A ) /\ ( ph -> A e. x ) ) -> A e. x ) |
| 29 | 26 28 | eqeltrd | |- ( ( ( ph /\ z = A ) /\ ( ph -> A e. x ) ) -> z e. x ) |
| 30 | 29 | exlimiv | |- ( E. y ( ( ph /\ z = A ) /\ ( ph -> A e. x ) ) -> z e. x ) |
| 31 | 25 30 | syl | |- ( ( E. y ( ph /\ z = A ) /\ A. y ( ph -> A e. x ) ) -> z e. x ) |
| 32 | 31 | ex | |- ( E. y ( ph /\ z = A ) -> ( A. y ( ph -> A e. x ) -> z e. x ) ) |
| 33 | 32 | alrimiv | |- ( E. y ( ph /\ z = A ) -> A. x ( A. y ( ph -> A e. x ) -> z e. x ) ) |
| 34 | vex | |- z e. _V |
|
| 35 | 34 | elintab | |- ( z e. |^| { x | A. y ( ph -> A e. x ) } <-> A. x ( A. y ( ph -> A e. x ) -> z e. x ) ) |
| 36 | 33 35 | sylibr | |- ( E. y ( ph /\ z = A ) -> z e. |^| { x | A. y ( ph -> A e. x ) } ) |
| 37 | 36 | abssi | |- { z | E. y ( ph /\ z = A ) } C_ |^| { x | A. y ( ph -> A e. x ) } |
| 38 | 24 37 | eqssi | |- |^| { x | A. y ( ph -> A e. x ) } = { z | E. y ( ph /\ z = A ) } |
| 39 | 38 6 | eqtri | |- |^| { x | A. y ( ph -> A e. x ) } = { x | E. y ( ph /\ x = A ) } |