This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class D for the second set variable y may depend on the first set variable x . (Contributed by AV, 29-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc2vd.a | ⊢ ( 𝑥 = 𝐴 → ( 𝜃 ↔ 𝜒 ) ) | |
| rspc2vd.b | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) | ||
| rspc2vd.c | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | ||
| rspc2vd.d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐸 ) | ||
| rspc2vd.e | ⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) | ||
| Assertion | rspc2vd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜃 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2vd.a | ⊢ ( 𝑥 = 𝐴 → ( 𝜃 ↔ 𝜒 ) ) | |
| 2 | rspc2vd.b | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) | |
| 3 | rspc2vd.c | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 4 | rspc2vd.d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐸 ) | |
| 5 | rspc2vd.e | ⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) | |
| 6 | 3 4 | csbied | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = 𝐸 ) |
| 7 | 5 6 | eleqtrrd | ⊢ ( 𝜑 → 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐷 | |
| 9 | nfv | ⊢ Ⅎ 𝑥 𝜒 | |
| 10 | 8 9 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 |
| 11 | csbeq1a | ⊢ ( 𝑥 = 𝐴 → 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) | |
| 12 | 11 1 | raleqbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝐷 𝜃 ↔ ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 ) ) |
| 13 | 10 12 | rspc | ⊢ ( 𝐴 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜃 → ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 ) ) |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜃 → ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 ) ) |
| 15 | 2 | rspcv | ⊢ ( 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 → ( ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 → 𝜓 ) ) |
| 16 | 7 14 15 | sylsyld | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜃 → 𝜓 ) ) |