This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infimum is the greatest lower bound. See also infcl and inflb . (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcl.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| infcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | ||
| Assertion | infglb | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcl.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | infcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | |
| 3 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
| 4 | 3 | breq1i | ⊢ ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ↔ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) 𝑅 𝐶 ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) | |
| 6 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 7 | 1 6 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 8 | 1 2 | infcllem | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 9 | 7 8 | supcl | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ) |
| 11 | brcnvg | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ) → ( 𝐶 ◡ 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) 𝑅 𝐶 ) ) | |
| 12 | 11 | bicomd | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ) → ( sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) ) |
| 13 | 5 10 12 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) ) |
| 14 | 4 13 | bitrid | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) ) |
| 15 | 7 8 | suplub | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐶 ◡ 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 ◡ 𝑅 𝑧 ) ) |
| 16 | 15 | expdimp | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 ◡ 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝐶 ◡ 𝑅 𝑧 ) ) |
| 17 | vex | ⊢ 𝑧 ∈ V | |
| 18 | brcnvg | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑧 ∈ V ) → ( 𝐶 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝐶 ) ) | |
| 19 | 5 17 18 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝐶 ) ) |
| 20 | 19 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 ◡ 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |
| 21 | 16 20 | sylibd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 ◡ 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |
| 22 | 14 21 | sylbid | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |
| 23 | 22 | expimpd | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |