This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infimum is a lower bound. See also infcl and infglb . (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcl.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| infcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | ||
| Assertion | inflb | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 → ¬ 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcl.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | infcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | |
| 3 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 5 | 1 2 | infcllem | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 6 | 4 5 | supub | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) ) |
| 7 | 6 | imp | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ¬ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) |
| 8 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
| 9 | 8 | a1i | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) |
| 10 | 9 | breq2d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ↔ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) ) |
| 11 | 4 5 | supcl | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ) |
| 12 | brcnvg | ⊢ ( ( sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ↔ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) ) | |
| 13 | 12 | bicomd | ⊢ ( ( sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) ) |
| 14 | 11 13 | sylan | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) ) |
| 15 | 10 14 | bitrd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) ) |
| 16 | 7 15 | mtbird | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ¬ 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) |
| 17 | 16 | ex | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 → ¬ 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |