This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infimum is the greatest lower bound. See also infcl and inflb . (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcl.1 | |- ( ph -> R Or A ) |
|
| infcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
||
| Assertion | infglb | |- ( ph -> ( ( C e. A /\ inf ( B , A , R ) R C ) -> E. z e. B z R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcl.1 | |- ( ph -> R Or A ) |
|
| 2 | infcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
|
| 3 | df-inf | |- inf ( B , A , R ) = sup ( B , A , `' R ) |
|
| 4 | 3 | breq1i | |- ( inf ( B , A , R ) R C <-> sup ( B , A , `' R ) R C ) |
| 5 | simpr | |- ( ( ph /\ C e. A ) -> C e. A ) |
|
| 6 | cnvso | |- ( R Or A <-> `' R Or A ) |
|
| 7 | 1 6 | sylib | |- ( ph -> `' R Or A ) |
| 8 | 1 2 | infcllem | |- ( ph -> E. x e. A ( A. y e. B -. x `' R y /\ A. y e. A ( y `' R x -> E. z e. B y `' R z ) ) ) |
| 9 | 7 8 | supcl | |- ( ph -> sup ( B , A , `' R ) e. A ) |
| 10 | 9 | adantr | |- ( ( ph /\ C e. A ) -> sup ( B , A , `' R ) e. A ) |
| 11 | brcnvg | |- ( ( C e. A /\ sup ( B , A , `' R ) e. A ) -> ( C `' R sup ( B , A , `' R ) <-> sup ( B , A , `' R ) R C ) ) |
|
| 12 | 11 | bicomd | |- ( ( C e. A /\ sup ( B , A , `' R ) e. A ) -> ( sup ( B , A , `' R ) R C <-> C `' R sup ( B , A , `' R ) ) ) |
| 13 | 5 10 12 | syl2anc | |- ( ( ph /\ C e. A ) -> ( sup ( B , A , `' R ) R C <-> C `' R sup ( B , A , `' R ) ) ) |
| 14 | 4 13 | bitrid | |- ( ( ph /\ C e. A ) -> ( inf ( B , A , R ) R C <-> C `' R sup ( B , A , `' R ) ) ) |
| 15 | 7 8 | suplub | |- ( ph -> ( ( C e. A /\ C `' R sup ( B , A , `' R ) ) -> E. z e. B C `' R z ) ) |
| 16 | 15 | expdimp | |- ( ( ph /\ C e. A ) -> ( C `' R sup ( B , A , `' R ) -> E. z e. B C `' R z ) ) |
| 17 | vex | |- z e. _V |
|
| 18 | brcnvg | |- ( ( C e. A /\ z e. _V ) -> ( C `' R z <-> z R C ) ) |
|
| 19 | 5 17 18 | sylancl | |- ( ( ph /\ C e. A ) -> ( C `' R z <-> z R C ) ) |
| 20 | 19 | rexbidv | |- ( ( ph /\ C e. A ) -> ( E. z e. B C `' R z <-> E. z e. B z R C ) ) |
| 21 | 16 20 | sylibd | |- ( ( ph /\ C e. A ) -> ( C `' R sup ( B , A , `' R ) -> E. z e. B z R C ) ) |
| 22 | 14 21 | sylbid | |- ( ( ph /\ C e. A ) -> ( inf ( B , A , R ) R C -> E. z e. B z R C ) ) |
| 23 | 22 | expimpd | |- ( ph -> ( ( C e. A /\ inf ( B , A , R ) R C ) -> E. z e. B z R C ) ) |