This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for restricted existential quantifier (deduction form). For a version based on fewer axioms see rexbidv . (Contributed by NM, 27-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rexbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rexbid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rexbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 4 | 1 3 | rexbida | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |