This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Auxiliary theorem for applications of supcvg . (Contributed by NM, 4-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcvg.1 | ⊢ 𝑅 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } | |
| infcvg.2 | ⊢ ( 𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ ) | ||
| infcvg.3 | ⊢ 𝑍 ∈ 𝑋 | ||
| infcvg.4 | ⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | ||
| infcvg.5a | ⊢ 𝑆 = - sup ( 𝑅 , ℝ , < ) | ||
| infcvg.13 | ⊢ ( 𝑦 = 𝐶 → 𝐴 = 𝐵 ) | ||
| Assertion | infcvgaux2i | ⊢ ( 𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcvg.1 | ⊢ 𝑅 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } | |
| 2 | infcvg.2 | ⊢ ( 𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ ) | |
| 3 | infcvg.3 | ⊢ 𝑍 ∈ 𝑋 | |
| 4 | infcvg.4 | ⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
| 5 | infcvg.5a | ⊢ 𝑆 = - sup ( 𝑅 , ℝ , < ) | |
| 6 | infcvg.13 | ⊢ ( 𝑦 = 𝐶 → 𝐴 = 𝐵 ) | |
| 7 | eqid | ⊢ - 𝐵 = - 𝐵 | |
| 8 | 6 | negeqd | ⊢ ( 𝑦 = 𝐶 → - 𝐴 = - 𝐵 ) |
| 9 | 8 | rspceeqv | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ - 𝐵 = - 𝐵 ) → ∃ 𝑦 ∈ 𝑋 - 𝐵 = - 𝐴 ) |
| 10 | 7 9 | mpan2 | ⊢ ( 𝐶 ∈ 𝑋 → ∃ 𝑦 ∈ 𝑋 - 𝐵 = - 𝐴 ) |
| 11 | negex | ⊢ - 𝐵 ∈ V | |
| 12 | eqeq1 | ⊢ ( 𝑥 = - 𝐵 → ( 𝑥 = - 𝐴 ↔ - 𝐵 = - 𝐴 ) ) | |
| 13 | 12 | rexbidv | ⊢ ( 𝑥 = - 𝐵 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 ↔ ∃ 𝑦 ∈ 𝑋 - 𝐵 = - 𝐴 ) ) |
| 14 | 11 13 1 | elab2 | ⊢ ( - 𝐵 ∈ 𝑅 ↔ ∃ 𝑦 ∈ 𝑋 - 𝐵 = - 𝐴 ) |
| 15 | 10 14 | sylibr | ⊢ ( 𝐶 ∈ 𝑋 → - 𝐵 ∈ 𝑅 ) |
| 16 | 1 2 3 4 | infcvgaux1i | ⊢ ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 ) |
| 17 | 16 | suprubii | ⊢ ( - 𝐵 ∈ 𝑅 → - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ) |
| 18 | 15 17 | syl | ⊢ ( 𝐶 ∈ 𝑋 → - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ) |
| 19 | 6 | eleq1d | ⊢ ( 𝑦 = 𝐶 → ( 𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ ) ) |
| 20 | 19 2 | vtoclga | ⊢ ( 𝐶 ∈ 𝑋 → 𝐵 ∈ ℝ ) |
| 21 | 16 | suprclii | ⊢ sup ( 𝑅 , ℝ , < ) ∈ ℝ |
| 22 | lenegcon1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ sup ( 𝑅 , ℝ , < ) ∈ ℝ ) → ( - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ↔ - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 ) ) | |
| 23 | 20 21 22 | sylancl | ⊢ ( 𝐶 ∈ 𝑋 → ( - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ↔ - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 ) ) |
| 24 | 18 23 | mpbid | ⊢ ( 𝐶 ∈ 𝑋 → - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 ) |
| 25 | 5 24 | eqbrtrid | ⊢ ( 𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵 ) |