This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a pair is the intersection of its members. Closed form of intpr . Theorem 71 of Suppes p. 42. (Contributed by FL, 27-Apr-2008) (Proof shortened by BJ, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint | ⊢ ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ) |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 3 | elpr | ⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
| 5 | 4 | imbi1i | ⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝑦 ) ) |
| 6 | jaob | ⊢ ( ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
| 9 | 19.26 | ⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) | |
| 10 | 2 8 9 | 3bitri | ⊢ ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
| 11 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 12 | clel4g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↔ ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ) ) | |
| 13 | clel4g | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝑥 ∈ 𝐵 ↔ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) | |
| 14 | 12 13 | bi2anan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) ) |
| 15 | 11 14 | bitr2id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 16 | 10 15 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 17 | 16 | alrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∀ 𝑥 ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 18 | dfcleq | ⊢ ( ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |