This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inelfi | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( A i^i B ) e. ( fi ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prelpwi | |- ( ( A e. X /\ B e. X ) -> { A , B } e. ~P X ) |
|
| 2 | 1 | 3adant1 | |- ( ( X e. V /\ A e. X /\ B e. X ) -> { A , B } e. ~P X ) |
| 3 | prfi | |- { A , B } e. Fin |
|
| 4 | 3 | a1i | |- ( ( X e. V /\ A e. X /\ B e. X ) -> { A , B } e. Fin ) |
| 5 | 2 4 | elind | |- ( ( X e. V /\ A e. X /\ B e. X ) -> { A , B } e. ( ~P X i^i Fin ) ) |
| 6 | intprg | |- ( ( A e. X /\ B e. X ) -> |^| { A , B } = ( A i^i B ) ) |
|
| 7 | 6 | 3adant1 | |- ( ( X e. V /\ A e. X /\ B e. X ) -> |^| { A , B } = ( A i^i B ) ) |
| 8 | 7 | eqcomd | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( A i^i B ) = |^| { A , B } ) |
| 9 | inteq | |- ( p = { A , B } -> |^| p = |^| { A , B } ) |
|
| 10 | 9 | rspceeqv | |- ( ( { A , B } e. ( ~P X i^i Fin ) /\ ( A i^i B ) = |^| { A , B } ) -> E. p e. ( ~P X i^i Fin ) ( A i^i B ) = |^| p ) |
| 11 | 5 8 10 | syl2anc | |- ( ( X e. V /\ A e. X /\ B e. X ) -> E. p e. ( ~P X i^i Fin ) ( A i^i B ) = |^| p ) |
| 12 | inex1g | |- ( A e. X -> ( A i^i B ) e. _V ) |
|
| 13 | 12 | 3ad2ant2 | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( A i^i B ) e. _V ) |
| 14 | simp1 | |- ( ( X e. V /\ A e. X /\ B e. X ) -> X e. V ) |
|
| 15 | elfi | |- ( ( ( A i^i B ) e. _V /\ X e. V ) -> ( ( A i^i B ) e. ( fi ` X ) <-> E. p e. ( ~P X i^i Fin ) ( A i^i B ) = |^| p ) ) |
|
| 16 | 13 14 15 | syl2anc | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( ( A i^i B ) e. ( fi ` X ) <-> E. p e. ( ~P X i^i Fin ) ( A i^i B ) = |^| p ) ) |
| 17 | 11 16 | mpbird | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( A i^i B ) e. ( fi ` X ) ) |