This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ineccnvmo | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 = 𝑧 ∨ ( [ 𝑦 ] ◡ 𝐹 ∩ [ 𝑧 ] ◡ 𝐹 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ 𝐹 | |
| 2 | id | ⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) | |
| 3 | 2 | inecmo | ⊢ ( Rel ◡ 𝐹 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 = 𝑧 ∨ ( [ 𝑦 ] ◡ 𝐹 ∩ [ 𝑧 ] ◡ 𝐹 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑦 ∈ 𝐵 𝑦 ◡ 𝐹 𝑥 ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 = 𝑧 ∨ ( [ 𝑦 ] ◡ 𝐹 ∩ [ 𝑧 ] ◡ 𝐹 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑦 ∈ 𝐵 𝑦 ◡ 𝐹 𝑥 ) |
| 5 | brcnvg | ⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝑦 ) ) | |
| 6 | 5 | el2v | ⊢ ( 𝑦 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝑦 ) |
| 7 | 6 | rmobii | ⊢ ( ∃* 𝑦 ∈ 𝐵 𝑦 ◡ 𝐹 𝑥 ↔ ∃* 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 ∈ 𝐵 𝑦 ◡ 𝐹 𝑥 ↔ ∀ 𝑥 ∃* 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) |
| 9 | 4 8 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 = 𝑧 ∨ ( [ 𝑦 ] ◡ 𝐹 ∩ [ 𝑧 ] ◡ 𝐹 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) |