This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alrmomorn | ⊢ ( ∀ 𝑥 ∃* 𝑦 ∈ ran 𝑅 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝑅 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo | ⊢ ( ∃* 𝑦 ∈ ran 𝑅 𝑥 𝑅 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ) | |
| 2 | cnvresrn | ⊢ ( ◡ 𝑅 ↾ ran 𝑅 ) = ◡ 𝑅 | |
| 3 | 2 | breqi | ⊢ ( 𝑦 ( ◡ 𝑅 ↾ ran 𝑅 ) 𝑥 ↔ 𝑦 ◡ 𝑅 𝑥 ) |
| 4 | brres | ⊢ ( 𝑥 ∈ V → ( 𝑦 ( ◡ 𝑅 ↾ ran 𝑅 ) 𝑥 ↔ ( 𝑦 ∈ ran 𝑅 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) ) | |
| 5 | 4 | elv | ⊢ ( 𝑦 ( ◡ 𝑅 ↾ ran 𝑅 ) 𝑥 ↔ ( 𝑦 ∈ ran 𝑅 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 6 | brcnvg | ⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 7 | 6 | el2v | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑦 ∈ ran 𝑅 ∧ 𝑦 ◡ 𝑅 𝑥 ) ↔ ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ) |
| 9 | 5 8 | bitri | ⊢ ( 𝑦 ( ◡ 𝑅 ↾ ran 𝑅 ) 𝑥 ↔ ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ) |
| 10 | 3 9 7 | 3bitr3i | ⊢ ( ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ↔ 𝑥 𝑅 𝑦 ) |
| 11 | 10 | mobii | ⊢ ( ∃* 𝑦 ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ↔ ∃* 𝑦 𝑥 𝑅 𝑦 ) |
| 12 | 1 11 | bitri | ⊢ ( ∃* 𝑦 ∈ ran 𝑅 𝑥 𝑅 𝑦 ↔ ∃* 𝑦 𝑥 𝑅 𝑦 ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 ∈ ran 𝑅 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝑅 𝑦 ) |