This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ineccnvmo | |- ( A. y e. B A. z e. B ( y = z \/ ( [ y ] `' F i^i [ z ] `' F ) = (/) ) <-> A. x E* y e. B x F y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' F |
|
| 2 | id | |- ( y = z -> y = z ) |
|
| 3 | 2 | inecmo | |- ( Rel `' F -> ( A. y e. B A. z e. B ( y = z \/ ( [ y ] `' F i^i [ z ] `' F ) = (/) ) <-> A. x E* y e. B y `' F x ) ) |
| 4 | 1 3 | ax-mp | |- ( A. y e. B A. z e. B ( y = z \/ ( [ y ] `' F i^i [ z ] `' F ) = (/) ) <-> A. x E* y e. B y `' F x ) |
| 5 | brcnvg | |- ( ( y e. _V /\ x e. _V ) -> ( y `' F x <-> x F y ) ) |
|
| 6 | 5 | el2v | |- ( y `' F x <-> x F y ) |
| 7 | 6 | rmobii | |- ( E* y e. B y `' F x <-> E* y e. B x F y ) |
| 8 | 7 | albii | |- ( A. x E* y e. B y `' F x <-> A. x E* y e. B x F y ) |
| 9 | 4 8 | bitri | |- ( A. y e. B A. z e. B ( y = z \/ ( [ y ] `' F i^i [ z ] `' F ) = (/) ) <-> A. x E* y e. B x F y ) |