This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskwe2 | ⊢ ( 𝑇 ∈ Tarski → 𝑇 ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑇 → 𝑦 ⊆ 𝑇 ) | |
| 2 | tskssel | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑦 ⊆ 𝑇 ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) | |
| 3 | 2 | 3exp | ⊢ ( 𝑇 ∈ Tarski → ( 𝑦 ⊆ 𝑇 → ( 𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇 ) ) ) |
| 4 | 1 3 | syl5 | ⊢ ( 𝑇 ∈ Tarski → ( 𝑦 ∈ 𝒫 𝑇 → ( 𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇 ) ) ) |
| 5 | 4 | ralrimiv | ⊢ ( 𝑇 ∈ Tarski → ∀ 𝑦 ∈ 𝒫 𝑇 ( 𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇 ) ) |
| 6 | rabss | ⊢ ( { 𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇 } ⊆ 𝑇 ↔ ∀ 𝑦 ∈ 𝒫 𝑇 ( 𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇 ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝑇 ∈ Tarski → { 𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇 } ⊆ 𝑇 ) |
| 8 | tskwe | ⊢ ( ( 𝑇 ∈ Tarski ∧ { 𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇 } ⊆ 𝑇 ) → 𝑇 ∈ dom card ) | |
| 9 | 7 8 | mpdan | ⊢ ( 𝑇 ∈ Tarski → 𝑇 ∈ dom card ) |