This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasaddf.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| imasaddf.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | ||
| imasaddflem.a | ⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ) | ||
| imasaddflem.c | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) | ||
| Assertion | imasaddflem | ⊢ ( 𝜑 → ∙ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasaddf.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 2 | imasaddf.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 3 | imasaddflem.a | ⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ) | |
| 4 | imasaddflem.c | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) | |
| 5 | 1 2 3 | imasaddfnlem | ⊢ ( 𝜑 → ∙ Fn ( 𝐵 × 𝐵 ) ) |
| 6 | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 8 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ 𝑝 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑝 ) ∈ 𝐵 ) | |
| 9 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ 𝑞 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) | |
| 10 | 8 9 | anim12dan | ⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑝 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) ) |
| 11 | opelxpi | ⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐵 × 𝐵 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 13 | 7 12 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 14 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ ( 𝑝 · 𝑞 ) ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) | |
| 15 | 7 4 14 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) |
| 16 | 13 15 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 ∈ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
| 17 | 16 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
| 18 | 17 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑉 ) ∧ 𝑞 ∈ 𝑉 ) → { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
| 19 | 18 | iunssd | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑉 ) → ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
| 20 | 19 | iunssd | ⊢ ( 𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
| 21 | 3 20 | eqsstrd | ⊢ ( 𝜑 → ∙ ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
| 22 | dff2 | ⊢ ( ∙ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ ( ∙ Fn ( 𝐵 × 𝐵 ) ∧ ∙ ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) ) | |
| 23 | 5 21 22 | sylanbrc | ⊢ ( 𝜑 → ∙ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |