This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iunssd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) | |
| Assertion | iunssd | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunssd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) | |
| 2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 3 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) | |
| 4 | 2 3 | sylibr | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |