This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasaddf.f | |- ( ph -> F : V -onto-> B ) |
|
| imasaddf.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
||
| imasaddflem.a | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
||
| imasaddflem.c | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
||
| Assertion | imasaddflem | |- ( ph -> .xb : ( B X. B ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasaddf.f | |- ( ph -> F : V -onto-> B ) |
|
| 2 | imasaddf.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
|
| 3 | imasaddflem.a | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 4 | imasaddflem.c | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
|
| 5 | 1 2 3 | imasaddfnlem | |- ( ph -> .xb Fn ( B X. B ) ) |
| 6 | fof | |- ( F : V -onto-> B -> F : V --> B ) |
|
| 7 | 1 6 | syl | |- ( ph -> F : V --> B ) |
| 8 | ffvelcdm | |- ( ( F : V --> B /\ p e. V ) -> ( F ` p ) e. B ) |
|
| 9 | ffvelcdm | |- ( ( F : V --> B /\ q e. V ) -> ( F ` q ) e. B ) |
|
| 10 | 8 9 | anim12dan | |- ( ( F : V --> B /\ ( p e. V /\ q e. V ) ) -> ( ( F ` p ) e. B /\ ( F ` q ) e. B ) ) |
| 11 | opelxpi | |- ( ( ( F ` p ) e. B /\ ( F ` q ) e. B ) -> <. ( F ` p ) , ( F ` q ) >. e. ( B X. B ) ) |
|
| 12 | 10 11 | syl | |- ( ( F : V --> B /\ ( p e. V /\ q e. V ) ) -> <. ( F ` p ) , ( F ` q ) >. e. ( B X. B ) ) |
| 13 | 7 12 | sylan | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> <. ( F ` p ) , ( F ` q ) >. e. ( B X. B ) ) |
| 14 | ffvelcdm | |- ( ( F : V --> B /\ ( p .x. q ) e. V ) -> ( F ` ( p .x. q ) ) e. B ) |
|
| 15 | 7 4 14 | syl2an2r | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( F ` ( p .x. q ) ) e. B ) |
| 16 | 13 15 | opelxpd | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. e. ( ( B X. B ) X. B ) ) |
| 17 | 16 | snssd | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ ( ( B X. B ) X. B ) ) |
| 18 | 17 | anassrs | |- ( ( ( ph /\ p e. V ) /\ q e. V ) -> { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ ( ( B X. B ) X. B ) ) |
| 19 | 18 | iunssd | |- ( ( ph /\ p e. V ) -> U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ ( ( B X. B ) X. B ) ) |
| 20 | 19 | iunssd | |- ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ ( ( B X. B ) X. B ) ) |
| 21 | 3 20 | eqsstrd | |- ( ph -> .xb C_ ( ( B X. B ) X. B ) ) |
| 22 | dff2 | |- ( .xb : ( B X. B ) --> B <-> ( .xb Fn ( B X. B ) /\ .xb C_ ( ( B X. B ) X. B ) ) ) |
|
| 23 | 5 21 22 | sylanbrc | |- ( ph -> .xb : ( B X. B ) --> B ) |