This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of an abelian group is an abelian group ( imasgrp analog). (Contributed by AV, 22-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasabl.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasabl.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasabl.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | ||
| imasabl.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasabl.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | ||
| imasabl.r | ⊢ ( 𝜑 → 𝑅 ∈ Abel ) | ||
| imasabl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | imasabl | ⊢ ( 𝜑 → ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasabl.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasabl.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasabl.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | |
| 4 | imasabl.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 5 | imasabl.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | |
| 6 | imasabl.r | ⊢ ( 𝜑 → 𝑅 ∈ Abel ) | |
| 7 | imasabl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 8 | 6 | ablgrpd | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 9 | 1 2 3 4 5 8 7 | imasgrp | ⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| 10 | 1 2 4 6 | imasbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 11 | 10 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = 𝐵 ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑈 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 13 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝑈 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 14 | 12 13 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 16 | foelcdmi | ⊢ ( ( 𝐹 : 𝑉 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ) | |
| 17 | 16 | ex | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ( 𝑥 ∈ 𝐵 → ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) |
| 18 | foelcdmi | ⊢ ( ( 𝐹 : 𝑉 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) | |
| 19 | 18 | ex | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ( 𝑦 ∈ 𝐵 → ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) ) |
| 20 | 17 19 | anim12d | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) ) ) |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) ) ) |
| 23 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑅 ∈ Abel ) |
| 24 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝑉 ↔ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 25 | 24 | biimpd | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝑉 → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( 𝑎 ∈ 𝑉 → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝑉 ↔ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 30 | 29 | biimpd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝑉 → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( 𝑏 ∈ 𝑉 → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → ( 𝑏 ∈ 𝑉 → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 33 | 32 | imp | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 34 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 35 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 36 | 34 35 | ablcom | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) |
| 37 | 23 28 33 36 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) |
| 38 | 37 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) ) |
| 39 | simplll | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝜑 ) | |
| 40 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) | |
| 41 | 40 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
| 42 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) | |
| 43 | 3 | eqcomd | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = + ) |
| 44 | 43 | oveqd | ⊢ ( 𝜑 → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑎 + 𝑏 ) ) |
| 45 | 44 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) ) |
| 46 | 43 | oveqd | ⊢ ( 𝜑 → ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) = ( 𝑝 + 𝑞 ) ) |
| 47 | 46 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) |
| 48 | 45 47 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ↔ ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 49 | 48 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ↔ ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 50 | 5 49 | sylibrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) |
| 51 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 52 | 4 50 1 2 6 35 51 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 53 | 39 41 42 52 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 54 | 4 50 1 2 6 35 51 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) ) |
| 55 | 39 42 41 54 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) ) |
| 56 | 38 53 55 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) ) |
| 58 | oveq12 | ⊢ ( ( ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) | |
| 59 | 58 | ancoms | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) |
| 60 | oveq12 | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) | |
| 61 | 59 60 | eqeq12d | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) → ( ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 62 | 61 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 63 | 57 62 | mpbid | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) |
| 64 | 63 | exp32 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) = 𝑦 → ( ( 𝐹 ‘ 𝑎 ) = 𝑥 → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) ) |
| 65 | 64 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 → ( ( 𝐹 ‘ 𝑎 ) = 𝑥 → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) ) |
| 66 | 65 | com23 | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) ) |
| 67 | 66 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) ) |
| 68 | 67 | impd | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 69 | 22 68 | syld | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 70 | 15 69 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 71 | 70 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) |
| 72 | 71 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) |
| 73 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) | |
| 74 | 72 73 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 75 | 9 74 | mpdan | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 76 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 77 | 76 51 | isabl2 | ⊢ ( 𝑈 ∈ Abel ↔ ( 𝑈 ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 78 | 77 | anbi1i | ⊢ ( ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ↔ ( ( 𝑈 ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| 79 | an21 | ⊢ ( ( ( 𝑈 ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) | |
| 80 | 78 79 | bitri | ⊢ ( ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 81 | 75 80 | sylibr | ⊢ ( 𝜑 → ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |