This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonempty indexed intersection of a class of ordinal numbers B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003) (Proof shortened by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinon | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiin3g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 3 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 4 | 3 | rnmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ On ) |
| 5 | dm0rn0 | ⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) | |
| 6 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 7 | 6 | eqeq1d | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ 𝐴 = ∅ ) ) |
| 8 | 5 7 | bitr3id | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ 𝐴 = ∅ ) ) |
| 9 | 8 | necon3bid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
| 10 | 9 | biimpar | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) |
| 11 | oninton | ⊢ ( ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ On ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) → ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ On ) | |
| 12 | 4 10 11 | syl2an2r | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ On ) |
| 13 | 2 12 | eqeltrd | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On ) |