This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonempty indexed intersection of a class of ordinal numbers B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003) (Proof shortened by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinon | |- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^|_ x e. A B e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiin3g | |- ( A. x e. A B e. On -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) ) |
|
| 2 | 1 | adantr | |- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) ) |
| 3 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 4 | 3 | rnmptss | |- ( A. x e. A B e. On -> ran ( x e. A |-> B ) C_ On ) |
| 5 | dm0rn0 | |- ( dom ( x e. A |-> B ) = (/) <-> ran ( x e. A |-> B ) = (/) ) |
|
| 6 | dmmptg | |- ( A. x e. A B e. On -> dom ( x e. A |-> B ) = A ) |
|
| 7 | 6 | eqeq1d | |- ( A. x e. A B e. On -> ( dom ( x e. A |-> B ) = (/) <-> A = (/) ) ) |
| 8 | 5 7 | bitr3id | |- ( A. x e. A B e. On -> ( ran ( x e. A |-> B ) = (/) <-> A = (/) ) ) |
| 9 | 8 | necon3bid | |- ( A. x e. A B e. On -> ( ran ( x e. A |-> B ) =/= (/) <-> A =/= (/) ) ) |
| 10 | 9 | biimpar | |- ( ( A. x e. A B e. On /\ A =/= (/) ) -> ran ( x e. A |-> B ) =/= (/) ) |
| 11 | oninton | |- ( ( ran ( x e. A |-> B ) C_ On /\ ran ( x e. A |-> B ) =/= (/) ) -> |^| ran ( x e. A |-> B ) e. On ) |
|
| 12 | 4 10 11 | syl2an2r | |- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^| ran ( x e. A |-> B ) e. On ) |
| 13 | 2 12 | eqeltrd | |- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^|_ x e. A B e. On ) |