This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intabs.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| intabs.2 | ⊢ ( 𝑥 = ∩ { 𝑦 ∣ 𝜓 } → ( 𝜑 ↔ 𝜒 ) ) | ||
| intabs.3 | ⊢ ( ∩ { 𝑦 ∣ 𝜓 } ⊆ 𝐴 ∧ 𝜒 ) | ||
| Assertion | intabs | ⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } = ∩ { 𝑥 ∣ 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intabs.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | intabs.2 | ⊢ ( 𝑥 = ∩ { 𝑦 ∣ 𝜓 } → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | intabs.3 | ⊢ ( ∩ { 𝑦 ∣ 𝜓 } ⊆ 𝐴 ∧ 𝜒 ) | |
| 4 | sseq1 | ⊢ ( 𝑥 = ∩ { 𝑦 ∣ 𝜓 } → ( 𝑥 ⊆ 𝐴 ↔ ∩ { 𝑦 ∣ 𝜓 } ⊆ 𝐴 ) ) | |
| 5 | 4 2 | anbi12d | ⊢ ( 𝑥 = ∩ { 𝑦 ∣ 𝜓 } → ( ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) ↔ ( ∩ { 𝑦 ∣ 𝜓 } ⊆ 𝐴 ∧ 𝜒 ) ) ) |
| 6 | 5 3 | intmin3 | ⊢ ( ∩ { 𝑦 ∣ 𝜓 } ∈ V → ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } ) |
| 7 | intnex | ⊢ ( ¬ ∩ { 𝑦 ∣ 𝜓 } ∈ V ↔ ∩ { 𝑦 ∣ 𝜓 } = V ) | |
| 8 | ssv | ⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ V | |
| 9 | sseq2 | ⊢ ( ∩ { 𝑦 ∣ 𝜓 } = V → ( ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } ↔ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ V ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( ∩ { 𝑦 ∣ 𝜓 } = V → ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } ) |
| 11 | 7 10 | sylbi | ⊢ ( ¬ ∩ { 𝑦 ∣ 𝜓 } ∈ V → ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } ) |
| 12 | 6 11 | pm2.61i | ⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } |
| 13 | 1 | cbvabv | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 } |
| 14 | 13 | inteqi | ⊢ ∩ { 𝑥 ∣ 𝜑 } = ∩ { 𝑦 ∣ 𝜓 } |
| 15 | 12 14 | sseqtrri | ⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑥 ∣ 𝜑 } |
| 16 | simpr | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) → 𝜑 ) | |
| 17 | 16 | ss2abi | ⊢ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ 𝜑 } |
| 18 | intss | ⊢ ( { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ 𝜑 } → ∩ { 𝑥 ∣ 𝜑 } ⊆ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ) | |
| 19 | 17 18 | ax-mp | ⊢ ∩ { 𝑥 ∣ 𝜑 } ⊆ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } |
| 20 | 15 19 | eqssi | ⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } = ∩ { 𝑥 ∣ 𝜑 } |