This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idsset | |- _I = ( SSet i^i `' SSet ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli | |- Rel _I |
|
| 2 | relsset | |- Rel SSet |
|
| 3 | relin1 | |- ( Rel SSet -> Rel ( SSet i^i `' SSet ) ) |
|
| 4 | 2 3 | ax-mp | |- Rel ( SSet i^i `' SSet ) |
| 5 | eqss | |- ( y = z <-> ( y C_ z /\ z C_ y ) ) |
|
| 6 | vex | |- z e. _V |
|
| 7 | 6 | ideq | |- ( y _I z <-> y = z ) |
| 8 | brin | |- ( y ( SSet i^i `' SSet ) z <-> ( y SSet z /\ y `' SSet z ) ) |
|
| 9 | 6 | brsset | |- ( y SSet z <-> y C_ z ) |
| 10 | vex | |- y e. _V |
|
| 11 | 10 6 | brcnv | |- ( y `' SSet z <-> z SSet y ) |
| 12 | 10 | brsset | |- ( z SSet y <-> z C_ y ) |
| 13 | 11 12 | bitri | |- ( y `' SSet z <-> z C_ y ) |
| 14 | 9 13 | anbi12i | |- ( ( y SSet z /\ y `' SSet z ) <-> ( y C_ z /\ z C_ y ) ) |
| 15 | 8 14 | bitri | |- ( y ( SSet i^i `' SSet ) z <-> ( y C_ z /\ z C_ y ) ) |
| 16 | 5 7 15 | 3bitr4i | |- ( y _I z <-> y ( SSet i^i `' SSet ) z ) |
| 17 | 1 4 16 | eqbrriv | |- _I = ( SSet i^i `' SSet ) |