This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idlimc.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| idlimc.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) | ||
| idlimc.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| Assertion | idlimc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 limℂ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlimc.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 2 | idlimc.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) | |
| 3 | idlimc.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 4 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → 𝑤 ∈ ℝ+ ) | |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 6 | 2 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 7 | 5 5 6 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 8 | 7 | fvoveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) = ( abs ‘ ( 𝑥 − 𝑋 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) = ( abs ‘ ( 𝑥 − 𝑋 ) ) ) |
| 10 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) | |
| 11 | 9 10 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 ) |
| 12 | 11 | adantrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 ) |
| 13 | 12 | ex | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 ) ) |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 ) ) |
| 15 | 14 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 ) ) |
| 16 | nfcv | ⊢ Ⅎ 𝑧 𝑥 | |
| 17 | nfcv | ⊢ Ⅎ 𝑧 𝑋 | |
| 18 | 16 17 | nfne | ⊢ Ⅎ 𝑧 𝑥 ≠ 𝑋 |
| 19 | nfv | ⊢ Ⅎ 𝑧 ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 | |
| 20 | 18 19 | nfan | ⊢ Ⅎ 𝑧 ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) |
| 21 | nfv | ⊢ Ⅎ 𝑧 ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 | |
| 22 | 20 21 | nfim | ⊢ Ⅎ 𝑧 ( ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 ) |
| 23 | nfv | ⊢ Ⅎ 𝑥 ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑤 ) | |
| 24 | nfcv | ⊢ Ⅎ 𝑥 abs | |
| 25 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) | |
| 26 | 2 25 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 27 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 28 | 26 27 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
| 29 | nfcv | ⊢ Ⅎ 𝑥 − | |
| 30 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 31 | 28 29 30 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) |
| 32 | 24 31 | nffv | ⊢ Ⅎ 𝑥 ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) |
| 33 | nfcv | ⊢ Ⅎ 𝑥 < | |
| 34 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 35 | 32 33 34 | nfbr | ⊢ Ⅎ 𝑥 ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 |
| 36 | 23 35 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) |
| 37 | neeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≠ 𝑋 ↔ 𝑧 ≠ 𝑋 ) ) | |
| 38 | fvoveq1 | ⊢ ( 𝑥 = 𝑧 → ( abs ‘ ( 𝑥 − 𝑋 ) ) = ( abs ‘ ( 𝑧 − 𝑋 ) ) ) | |
| 39 | 38 | breq1d | ⊢ ( 𝑥 = 𝑧 → ( ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ↔ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑤 ) ) |
| 40 | 37 39 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) ↔ ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑤 ) ) ) |
| 41 | 40 | imbrov2fvoveq | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 ) ↔ ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) ) ) |
| 42 | 22 36 41 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑥 ≠ 𝑋 ∧ ( abs ‘ ( 𝑥 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝑋 ) ) < 𝑤 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) ) |
| 43 | 15 42 | sylib | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) ) |
| 44 | brimralrspcev | ⊢ ( ( 𝑤 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) ) | |
| 45 | 4 43 44 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) ) |
| 46 | 45 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) ) |
| 47 | 1 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) |
| 48 | 47 2 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 49 | 48 1 3 | ellimc3 | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 limℂ 𝑋 ) ↔ ( 𝑋 ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝑋 ∧ ( abs ‘ ( 𝑧 − 𝑋 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑋 ) ) < 𝑤 ) ) ) ) |
| 50 | 3 46 49 | mpbir2and | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 limℂ 𝑋 ) ) |