This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of reciprocals of positive integers, multiplied by the factor A , converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcnvg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐴 / 𝑛 ) ) ⇝ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluznn | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ℕ ) | |
| 2 | eqidd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ) | |
| 3 | oveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐴 / 𝑚 ) = ( 𝐴 / 𝑛 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 = 𝑛 ) → ( 𝐴 / 𝑚 ) = ( 𝐴 / 𝑛 ) ) |
| 5 | id | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) | |
| 6 | ovexd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 / 𝑛 ) ∈ V ) | |
| 7 | 2 4 5 6 | fvmptd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) = ( 𝐴 / 𝑛 ) ) |
| 8 | 7 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 / 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) |
| 9 | 1 8 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 / 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) |
| 10 | 9 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 / 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) |
| 11 | 10 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐴 / 𝑛 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) ) |
| 12 | divcnv | ⊢ ( 𝐴 ∈ ℂ → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
| 14 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) | |
| 15 | 14 | nnzd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 16 | nnex | ⊢ ℕ ∈ V | |
| 17 | 16 | mptex | ⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ∈ V |
| 18 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 19 | eqid | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) | |
| 20 | 18 19 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ∈ V ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) ⇝ 0 ) ) |
| 21 | 15 17 20 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) ⇝ 0 ) ) |
| 22 | 13 21 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) ⇝ 0 ) |
| 23 | 11 22 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐴 / 𝑛 ) ) ⇝ 0 ) |