This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idlimc.a | |- ( ph -> A C_ CC ) |
|
| idlimc.f | |- F = ( x e. A |-> x ) |
||
| idlimc.x | |- ( ph -> X e. CC ) |
||
| Assertion | idlimc | |- ( ph -> X e. ( F limCC X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlimc.a | |- ( ph -> A C_ CC ) |
|
| 2 | idlimc.f | |- F = ( x e. A |-> x ) |
|
| 3 | idlimc.x | |- ( ph -> X e. CC ) |
|
| 4 | simpr | |- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
|
| 5 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 6 | 2 | fvmpt2 | |- ( ( x e. A /\ x e. A ) -> ( F ` x ) = x ) |
| 7 | 5 5 6 | syl2anc | |- ( ( ph /\ x e. A ) -> ( F ` x ) = x ) |
| 8 | 7 | fvoveq1d | |- ( ( ph /\ x e. A ) -> ( abs ` ( ( F ` x ) - X ) ) = ( abs ` ( x - X ) ) ) |
| 9 | 8 | adantr | |- ( ( ( ph /\ x e. A ) /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) = ( abs ` ( x - X ) ) ) |
| 10 | simpr | |- ( ( ( ph /\ x e. A ) /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( x - X ) ) < w ) |
|
| 11 | 9 10 | eqbrtrd | |- ( ( ( ph /\ x e. A ) /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) |
| 12 | 11 | adantrl | |- ( ( ( ph /\ x e. A ) /\ ( x =/= X /\ ( abs ` ( x - X ) ) < w ) ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) |
| 13 | 12 | ex | |- ( ( ph /\ x e. A ) -> ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) ) |
| 14 | 13 | adantlr | |- ( ( ( ph /\ w e. RR+ ) /\ x e. A ) -> ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) ) |
| 15 | 14 | ralrimiva | |- ( ( ph /\ w e. RR+ ) -> A. x e. A ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) ) |
| 16 | nfcv | |- F/_ z x |
|
| 17 | nfcv | |- F/_ z X |
|
| 18 | 16 17 | nfne | |- F/ z x =/= X |
| 19 | nfv | |- F/ z ( abs ` ( x - X ) ) < w |
|
| 20 | 18 19 | nfan | |- F/ z ( x =/= X /\ ( abs ` ( x - X ) ) < w ) |
| 21 | nfv | |- F/ z ( abs ` ( ( F ` x ) - X ) ) < w |
|
| 22 | 20 21 | nfim | |- F/ z ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) |
| 23 | nfv | |- F/ x ( z =/= X /\ ( abs ` ( z - X ) ) < w ) |
|
| 24 | nfcv | |- F/_ x abs |
|
| 25 | nfmpt1 | |- F/_ x ( x e. A |-> x ) |
|
| 26 | 2 25 | nfcxfr | |- F/_ x F |
| 27 | nfcv | |- F/_ x z |
|
| 28 | 26 27 | nffv | |- F/_ x ( F ` z ) |
| 29 | nfcv | |- F/_ x - |
|
| 30 | nfcv | |- F/_ x X |
|
| 31 | 28 29 30 | nfov | |- F/_ x ( ( F ` z ) - X ) |
| 32 | 24 31 | nffv | |- F/_ x ( abs ` ( ( F ` z ) - X ) ) |
| 33 | nfcv | |- F/_ x < |
|
| 34 | nfcv | |- F/_ x w |
|
| 35 | 32 33 34 | nfbr | |- F/ x ( abs ` ( ( F ` z ) - X ) ) < w |
| 36 | 23 35 | nfim | |- F/ x ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) |
| 37 | neeq1 | |- ( x = z -> ( x =/= X <-> z =/= X ) ) |
|
| 38 | fvoveq1 | |- ( x = z -> ( abs ` ( x - X ) ) = ( abs ` ( z - X ) ) ) |
|
| 39 | 38 | breq1d | |- ( x = z -> ( ( abs ` ( x - X ) ) < w <-> ( abs ` ( z - X ) ) < w ) ) |
| 40 | 37 39 | anbi12d | |- ( x = z -> ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) <-> ( z =/= X /\ ( abs ` ( z - X ) ) < w ) ) ) |
| 41 | 40 | imbrov2fvoveq | |- ( x = z -> ( ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) <-> ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) ) |
| 42 | 22 36 41 | cbvralw | |- ( A. x e. A ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) <-> A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 43 | 15 42 | sylib | |- ( ( ph /\ w e. RR+ ) -> A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 44 | brimralrspcev | |- ( ( w e. RR+ /\ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < y ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
|
| 45 | 4 43 44 | syl2anc | |- ( ( ph /\ w e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < y ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 46 | 45 | ralrimiva | |- ( ph -> A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < y ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 47 | 1 | sselda | |- ( ( ph /\ x e. A ) -> x e. CC ) |
| 48 | 47 2 | fmptd | |- ( ph -> F : A --> CC ) |
| 49 | 48 1 3 | ellimc3 | |- ( ph -> ( X e. ( F limCC X ) <-> ( X e. CC /\ A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < y ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) ) ) |
| 50 | 3 46 49 | mpbir2and | |- ( ph -> X e. ( F limCC X ) ) |