This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idcnop | ⊢ ( I ↾ ℋ ) ∈ ContOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | ⊢ ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ | |
| 2 | f1of | ⊢ ( ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ → ( I ↾ ℋ ) : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | ax-mp | ⊢ ( I ↾ ℋ ) : ℋ ⟶ ℋ |
| 4 | id | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+ ) | |
| 5 | fvresi | ⊢ ( 𝑤 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑤 ) = 𝑤 ) | |
| 6 | fvresi | ⊢ ( 𝑥 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑥 ) = 𝑥 ) | |
| 7 | 5 6 | oveqan12rd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) = ( 𝑤 −ℎ 𝑥 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) |
| 9 | 8 | breq1d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 10 | 9 | biimprd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 11 | 10 | ralrimiva | ⊢ ( 𝑥 ∈ ℋ → ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 12 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 ) ) | |
| 13 | 12 | rspceaimv | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 14 | 4 11 13 | syl2anr | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 15 | 14 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) |
| 16 | elcnop | ⊢ ( ( I ↾ ℋ ) ∈ ContOp ↔ ( ( I ↾ ℋ ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) | |
| 17 | 3 15 16 | mpbir2an | ⊢ ( I ↾ ℋ ) ∈ ContOp |