This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert space identity operator is a Hermitian operator. (Contributed by NM, 22-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idhmop | ⊢ Iop ∈ HrmOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoif | ⊢ Iop : ℋ –1-1-onto→ ℋ | |
| 2 | f1of | ⊢ ( Iop : ℋ –1-1-onto→ ℋ → Iop : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | ax-mp | ⊢ Iop : ℋ ⟶ ℋ |
| 4 | hoival | ⊢ ( 𝑥 ∈ ℋ → ( Iop ‘ 𝑥 ) = 𝑥 ) | |
| 5 | 4 | eqcomd | ⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( Iop ‘ 𝑥 ) ) |
| 6 | hoival | ⊢ ( 𝑦 ∈ ℋ → ( Iop ‘ 𝑦 ) = 𝑦 ) | |
| 7 | 5 6 | oveqan12d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( Iop ‘ 𝑦 ) ) = ( ( Iop ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 8 | 7 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( Iop ‘ 𝑦 ) ) = ( ( Iop ‘ 𝑥 ) ·ih 𝑦 ) |
| 9 | elhmop | ⊢ ( Iop ∈ HrmOp ↔ ( Iop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( Iop ‘ 𝑦 ) ) = ( ( Iop ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 10 | 3 8 9 | mpbir2an | ⊢ Iop ∈ HrmOp |