This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-closed right-open interval gotten by a closed iterval taking away the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icoiccdif | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) = ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icossicc | ⊢ ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 3 | 2 | sselda | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 4 | elico1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) | |
| 5 | 4 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 6 | 5 | simp1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
| 7 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) | |
| 8 | 5 | simp3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 < 𝐵 ) |
| 9 | xrltne | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 < 𝐵 ) → 𝐵 ≠ 𝑥 ) | |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ≠ 𝑥 ) |
| 11 | 10 | necomd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ≠ 𝐵 ) |
| 12 | 11 | neneqd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ¬ 𝑥 = 𝐵 ) |
| 13 | velsn | ⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) | |
| 14 | 12 13 | sylnibr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ¬ 𝑥 ∈ { 𝐵 } ) |
| 15 | 3 14 | eldifd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) |
| 16 | 15 | ex | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) → 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) |
| 18 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝐴 ∈ ℝ* ) | |
| 19 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝐵 ∈ ℝ* ) | |
| 20 | eldifi | ⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 21 | eliccxr | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ* ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) → 𝑥 ∈ ℝ* ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 ∈ ℝ* ) |
| 24 | 20 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 25 | elicc1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 27 | 24 26 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 28 | 27 | simp2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝐴 ≤ 𝑥 ) |
| 29 | eldifsni | ⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) → 𝑥 ≠ 𝐵 ) | |
| 30 | 29 | necomd | ⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) → 𝐵 ≠ 𝑥 ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝐵 ≠ 𝑥 ) |
| 32 | 27 | simp3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 ≤ 𝐵 ) |
| 33 | xrleltne | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 < 𝐵 ↔ 𝐵 ≠ 𝑥 ) ) | |
| 34 | 23 19 32 33 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → ( 𝑥 < 𝐵 ↔ 𝐵 ≠ 𝑥 ) ) |
| 35 | 31 34 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 < 𝐵 ) |
| 36 | 18 19 23 28 35 | elicod | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 37 | 17 36 | eqelssd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) = ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) |