This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-closed right-open interval gotten by a closed iterval taking away the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icoiccdif | |- ( ( A e. RR* /\ B e. RR* ) -> ( A [,) B ) = ( ( A [,] B ) \ { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icossicc | |- ( A [,) B ) C_ ( A [,] B ) |
|
| 2 | 1 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( A [,) B ) C_ ( A [,] B ) ) |
| 3 | 2 | sselda | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x e. ( A [,] B ) ) |
| 4 | elico1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) |
|
| 5 | 4 | biimpa | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> ( x e. RR* /\ A <_ x /\ x < B ) ) |
| 6 | 5 | simp1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x e. RR* ) |
| 7 | simplr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> B e. RR* ) |
|
| 8 | 5 | simp3d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x < B ) |
| 9 | xrltne | |- ( ( x e. RR* /\ B e. RR* /\ x < B ) -> B =/= x ) |
|
| 10 | 6 7 8 9 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> B =/= x ) |
| 11 | 10 | necomd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x =/= B ) |
| 12 | 11 | neneqd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> -. x = B ) |
| 13 | velsn | |- ( x e. { B } <-> x = B ) |
|
| 14 | 12 13 | sylnibr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> -. x e. { B } ) |
| 15 | 3 14 | eldifd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x e. ( ( A [,] B ) \ { B } ) ) |
| 16 | 15 | ex | |- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,) B ) -> x e. ( ( A [,] B ) \ { B } ) ) ) |
| 17 | 16 | ssrdv | |- ( ( A e. RR* /\ B e. RR* ) -> ( A [,) B ) C_ ( ( A [,] B ) \ { B } ) ) |
| 18 | simpll | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> A e. RR* ) |
|
| 19 | simplr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> B e. RR* ) |
|
| 20 | eldifi | |- ( x e. ( ( A [,] B ) \ { B } ) -> x e. ( A [,] B ) ) |
|
| 21 | eliccxr | |- ( x e. ( A [,] B ) -> x e. RR* ) |
|
| 22 | 20 21 | syl | |- ( x e. ( ( A [,] B ) \ { B } ) -> x e. RR* ) |
| 23 | 22 | adantl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x e. RR* ) |
| 24 | 20 | adantl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x e. ( A [,] B ) ) |
| 25 | elicc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
|
| 26 | 25 | adantr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
| 27 | 24 26 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> ( x e. RR* /\ A <_ x /\ x <_ B ) ) |
| 28 | 27 | simp2d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> A <_ x ) |
| 29 | eldifsni | |- ( x e. ( ( A [,] B ) \ { B } ) -> x =/= B ) |
|
| 30 | 29 | necomd | |- ( x e. ( ( A [,] B ) \ { B } ) -> B =/= x ) |
| 31 | 30 | adantl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> B =/= x ) |
| 32 | 27 | simp3d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x <_ B ) |
| 33 | xrleltne | |- ( ( x e. RR* /\ B e. RR* /\ x <_ B ) -> ( x < B <-> B =/= x ) ) |
|
| 34 | 23 19 32 33 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> ( x < B <-> B =/= x ) ) |
| 35 | 31 34 | mpbird | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x < B ) |
| 36 | 18 19 23 28 35 | elicod | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x e. ( A [,) B ) ) |
| 37 | 17 36 | eqelssd | |- ( ( A e. RR* /\ B e. RR* ) -> ( A [,) B ) = ( ( A [,] B ) \ { B } ) ) |