This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left-closed right-open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icoopn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| icoopn.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| icoopn.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| icoopn.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| icoopn.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 [,) 𝐵 ) ) | ||
| icoopn.cleb | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) | ||
| Assertion | icoopn | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐶 ) ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoopn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | icoopn.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 3 | icoopn.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 4 | icoopn.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 5 | icoopn.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 [,) 𝐵 ) ) | |
| 6 | icoopn.cleb | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) | |
| 7 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 8 | 4 7 | eqeltri | ⊢ 𝐾 ∈ Top |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 10 | ovexd | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ∈ V ) | |
| 11 | iooretop | ⊢ ( -∞ (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) | |
| 12 | 11 4 | eleqtrri | ⊢ ( -∞ (,) 𝐶 ) ∈ 𝐾 |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( -∞ (,) 𝐶 ) ∈ 𝐾 ) |
| 14 | elrestr | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 [,) 𝐵 ) ∈ V ∧ ( -∞ (,) 𝐶 ) ∈ 𝐾 ) → ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ∈ ( 𝐾 ↾t ( 𝐴 [,) 𝐵 ) ) ) | |
| 15 | 9 10 13 14 | syl3anc | ⊢ ( 𝜑 → ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ∈ ( 𝐾 ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 16 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐴 ∈ ℝ* ) |
| 18 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐶 ∈ ℝ* ) |
| 19 | elinel1 | ⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) | |
| 20 | elioore | ⊢ ( 𝑥 ∈ ( -∞ (,) 𝐶 ) → 𝑥 ∈ ℝ ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 22 | 21 | rexrd | ⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ℝ* ) |
| 24 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐵 ∈ ℝ* ) |
| 25 | elinel2 | ⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 27 | icogelb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ≤ 𝑥 ) | |
| 28 | 17 24 26 27 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐴 ≤ 𝑥 ) |
| 29 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 30 | 29 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → -∞ ∈ ℝ* ) |
| 31 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) |
| 32 | iooltub | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( -∞ (,) 𝐶 ) ) → 𝑥 < 𝐶 ) | |
| 33 | 30 18 31 32 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 < 𝐶 ) |
| 34 | 17 18 23 28 33 | elicod | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) |
| 35 | 29 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → -∞ ∈ ℝ* ) |
| 36 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
| 37 | icossre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 [,) 𝐶 ) ⊆ ℝ ) | |
| 38 | 1 2 37 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐶 ) ⊆ ℝ ) |
| 39 | 38 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 ∈ ℝ ) |
| 40 | 39 | mnfltd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → -∞ < 𝑥 ) |
| 41 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝐴 ∈ ℝ* ) |
| 42 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) | |
| 43 | icoltub | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 < 𝐶 ) | |
| 44 | 41 36 42 43 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
| 45 | 35 36 39 40 44 | eliood | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) |
| 46 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
| 47 | 39 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 ∈ ℝ* ) |
| 48 | icogelb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝐴 ≤ 𝑥 ) | |
| 49 | 41 36 42 48 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝐴 ≤ 𝑥 ) |
| 50 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝐶 ≤ 𝐵 ) |
| 51 | 47 36 46 44 50 | xrltletrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 < 𝐵 ) |
| 52 | 41 46 47 49 51 | elicod | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 53 | 45 52 | elind | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) → 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) |
| 54 | 34 53 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) ↔ 𝑥 ∈ ( 𝐴 [,) 𝐶 ) ) ) |
| 55 | 54 | eqrdv | ⊢ ( 𝜑 → ( ( -∞ (,) 𝐶 ) ∩ ( 𝐴 [,) 𝐵 ) ) = ( 𝐴 [,) 𝐶 ) ) |
| 56 | 5 | eqcomi | ⊢ ( 𝐾 ↾t ( 𝐴 [,) 𝐵 ) ) = 𝐽 |
| 57 | 56 | a1i | ⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 [,) 𝐵 ) ) = 𝐽 ) |
| 58 | 15 55 57 | 3eltr3d | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐶 ) ∈ 𝐽 ) |