This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a real number in [ 0 , 1 ) is 0. Remark: may shorten the proof of modid or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ico01fl0 | ⊢ ( 𝐴 ∈ ( 0 [,) 1 ) → ( ⌊ ‘ 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | 1xr | ⊢ 1 ∈ ℝ* | |
| 3 | icossre | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) → ( 0 [,) 1 ) ⊆ ℝ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 0 [,) 1 ) ⊆ ℝ |
| 5 | 4 | sseli | ⊢ ( 𝐴 ∈ ( 0 [,) 1 ) → 𝐴 ∈ ℝ ) |
| 6 | 0xr | ⊢ 0 ∈ ℝ* | |
| 7 | elico1 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝐴 ∈ ( 0 [,) 1 ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 1 ) ) ) | |
| 8 | 6 2 7 | mp2an | ⊢ ( 𝐴 ∈ ( 0 [,) 1 ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 1 ) ) |
| 9 | 8 | simp2bi | ⊢ ( 𝐴 ∈ ( 0 [,) 1 ) → 0 ≤ 𝐴 ) |
| 10 | 8 | simp3bi | ⊢ ( 𝐴 ∈ ( 0 [,) 1 ) → 𝐴 < 1 ) |
| 11 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 12 | 11 | addlidd | ⊢ ( 𝐴 ∈ ℝ → ( 0 + 𝐴 ) = 𝐴 ) |
| 13 | 12 | fveqeq2d | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 0 + 𝐴 ) ) = 0 ↔ ( ⌊ ‘ 𝐴 ) = 0 ) ) |
| 14 | 0z | ⊢ 0 ∈ ℤ | |
| 15 | flbi2 | ⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ ( 0 + 𝐴 ) ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < 1 ) ) ) | |
| 16 | 14 15 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 0 + 𝐴 ) ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < 1 ) ) ) |
| 17 | 13 16 | bitr3d | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < 1 ) ) ) |
| 18 | 17 | biimpar | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 1 ) ) → ( ⌊ ‘ 𝐴 ) = 0 ) |
| 19 | 5 9 10 18 | syl12anc | ⊢ ( 𝐴 ∈ ( 0 [,) 1 ) → ( ⌊ ‘ 𝐴 ) = 0 ) |