This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a real number in [ 0 , 1 ) is 0. Remark: may shorten the proof of modid or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ico01fl0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ||
| 2 | 1xr | ||
| 3 | icossre | ||
| 4 | 1 2 3 | mp2an | |
| 5 | 4 | sseli | |
| 6 | 0xr | ||
| 7 | elico1 | ||
| 8 | 6 2 7 | mp2an | |
| 9 | 8 | simp2bi | |
| 10 | 8 | simp3bi | |
| 11 | recn | ||
| 12 | 11 | addlidd | |
| 13 | 12 | fveqeq2d | |
| 14 | 0z | ||
| 15 | flbi2 | ||
| 16 | 14 15 | mpan | |
| 17 | 13 16 | bitr3d | |
| 18 | 17 | biimpar | |
| 19 | 5 9 10 18 | syl12anc |