This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a real number in [ 0 , 1 ) is 0. Remark: may shorten the proof of modid or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ico01fl0 | |- ( A e. ( 0 [,) 1 ) -> ( |_ ` A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | 1xr | |- 1 e. RR* |
|
| 3 | icossre | |- ( ( 0 e. RR /\ 1 e. RR* ) -> ( 0 [,) 1 ) C_ RR ) |
|
| 4 | 1 2 3 | mp2an | |- ( 0 [,) 1 ) C_ RR |
| 5 | 4 | sseli | |- ( A e. ( 0 [,) 1 ) -> A e. RR ) |
| 6 | 0xr | |- 0 e. RR* |
|
| 7 | elico1 | |- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( A e. ( 0 [,) 1 ) <-> ( A e. RR* /\ 0 <_ A /\ A < 1 ) ) ) |
|
| 8 | 6 2 7 | mp2an | |- ( A e. ( 0 [,) 1 ) <-> ( A e. RR* /\ 0 <_ A /\ A < 1 ) ) |
| 9 | 8 | simp2bi | |- ( A e. ( 0 [,) 1 ) -> 0 <_ A ) |
| 10 | 8 | simp3bi | |- ( A e. ( 0 [,) 1 ) -> A < 1 ) |
| 11 | recn | |- ( A e. RR -> A e. CC ) |
|
| 12 | 11 | addlidd | |- ( A e. RR -> ( 0 + A ) = A ) |
| 13 | 12 | fveqeq2d | |- ( A e. RR -> ( ( |_ ` ( 0 + A ) ) = 0 <-> ( |_ ` A ) = 0 ) ) |
| 14 | 0z | |- 0 e. ZZ |
|
| 15 | flbi2 | |- ( ( 0 e. ZZ /\ A e. RR ) -> ( ( |_ ` ( 0 + A ) ) = 0 <-> ( 0 <_ A /\ A < 1 ) ) ) |
|
| 16 | 14 15 | mpan | |- ( A e. RR -> ( ( |_ ` ( 0 + A ) ) = 0 <-> ( 0 <_ A /\ A < 1 ) ) ) |
| 17 | 13 16 | bitr3d | |- ( A e. RR -> ( ( |_ ` A ) = 0 <-> ( 0 <_ A /\ A < 1 ) ) ) |
| 18 | 17 | biimpar | |- ( ( A e. RR /\ ( 0 <_ A /\ A < 1 ) ) -> ( |_ ` A ) = 0 ) |
| 19 | 5 9 10 18 | syl12anc | |- ( A e. ( 0 [,) 1 ) -> ( |_ ` A ) = 0 ) |