This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccsuble.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| iccsuble.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| iccsuble.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| iccsuble.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| Assertion | iccsuble | ⊢ ( 𝜑 → ( 𝐶 − 𝐷 ) ≤ ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccsuble.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | iccsuble.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | iccsuble.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 4 | iccsuble.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 5 | eliccre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ ) | |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 7 | eliccre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℝ ) | |
| 8 | 1 2 4 7 | syl3anc | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 9 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 11 | 3 10 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 12 | 11 | simp3d | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
| 13 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ) | |
| 14 | 1 2 13 | syl2anc | ⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ) |
| 15 | 4 14 | mpbid | ⊢ ( 𝜑 → ( 𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) |
| 16 | 15 | simp2d | ⊢ ( 𝜑 → 𝐴 ≤ 𝐷 ) |
| 17 | 6 1 2 8 12 16 | le2subd | ⊢ ( 𝜑 → ( 𝐶 − 𝐷 ) ≤ ( 𝐵 − 𝐴 ) ) |