This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccshift.1 | |- ( ph -> A e. RR ) |
|
| iccshift.2 | |- ( ph -> B e. RR ) |
||
| iccshift.3 | |- ( ph -> T e. RR ) |
||
| Assertion | iccshift | |- ( ph -> ( ( A + T ) [,] ( B + T ) ) = { w e. CC | E. z e. ( A [,] B ) w = ( z + T ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccshift.1 | |- ( ph -> A e. RR ) |
|
| 2 | iccshift.2 | |- ( ph -> B e. RR ) |
|
| 3 | iccshift.3 | |- ( ph -> T e. RR ) |
|
| 4 | eqeq1 | |- ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) |
|
| 5 | 4 | rexbidv | |- ( w = x -> ( E. z e. ( A [,] B ) w = ( z + T ) <-> E. z e. ( A [,] B ) x = ( z + T ) ) ) |
| 6 | 5 | elrab | |- ( x e. { w e. CC | E. z e. ( A [,] B ) w = ( z + T ) } <-> ( x e. CC /\ E. z e. ( A [,] B ) x = ( z + T ) ) ) |
| 7 | simprr | |- ( ( ph /\ ( x e. CC /\ E. z e. ( A [,] B ) x = ( z + T ) ) ) -> E. z e. ( A [,] B ) x = ( z + T ) ) |
|
| 8 | nfv | |- F/ z ph |
|
| 9 | nfv | |- F/ z x e. CC |
|
| 10 | nfre1 | |- F/ z E. z e. ( A [,] B ) x = ( z + T ) |
|
| 11 | 9 10 | nfan | |- F/ z ( x e. CC /\ E. z e. ( A [,] B ) x = ( z + T ) ) |
| 12 | 8 11 | nfan | |- F/ z ( ph /\ ( x e. CC /\ E. z e. ( A [,] B ) x = ( z + T ) ) ) |
| 13 | nfv | |- F/ z x e. ( ( A + T ) [,] ( B + T ) ) |
|
| 14 | simp3 | |- ( ( ph /\ z e. ( A [,] B ) /\ x = ( z + T ) ) -> x = ( z + T ) ) |
|
| 15 | 1 2 | iccssred | |- ( ph -> ( A [,] B ) C_ RR ) |
| 16 | 15 | sselda | |- ( ( ph /\ z e. ( A [,] B ) ) -> z e. RR ) |
| 17 | 3 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> T e. RR ) |
| 18 | 16 17 | readdcld | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( z + T ) e. RR ) |
| 19 | 1 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> A e. RR ) |
| 20 | simpr | |- ( ( ph /\ z e. ( A [,] B ) ) -> z e. ( A [,] B ) ) |
|
| 21 | 2 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> B e. RR ) |
| 22 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( z e. ( A [,] B ) <-> ( z e. RR /\ A <_ z /\ z <_ B ) ) ) |
|
| 23 | 19 21 22 | syl2anc | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( z e. ( A [,] B ) <-> ( z e. RR /\ A <_ z /\ z <_ B ) ) ) |
| 24 | 20 23 | mpbid | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( z e. RR /\ A <_ z /\ z <_ B ) ) |
| 25 | 24 | simp2d | |- ( ( ph /\ z e. ( A [,] B ) ) -> A <_ z ) |
| 26 | 19 16 17 25 | leadd1dd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( A + T ) <_ ( z + T ) ) |
| 27 | 24 | simp3d | |- ( ( ph /\ z e. ( A [,] B ) ) -> z <_ B ) |
| 28 | 16 21 17 27 | leadd1dd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( z + T ) <_ ( B + T ) ) |
| 29 | 18 26 28 | 3jca | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( z + T ) e. RR /\ ( A + T ) <_ ( z + T ) /\ ( z + T ) <_ ( B + T ) ) ) |
| 30 | 29 | 3adant3 | |- ( ( ph /\ z e. ( A [,] B ) /\ x = ( z + T ) ) -> ( ( z + T ) e. RR /\ ( A + T ) <_ ( z + T ) /\ ( z + T ) <_ ( B + T ) ) ) |
| 31 | 1 3 | readdcld | |- ( ph -> ( A + T ) e. RR ) |
| 32 | 31 | 3ad2ant1 | |- ( ( ph /\ z e. ( A [,] B ) /\ x = ( z + T ) ) -> ( A + T ) e. RR ) |
| 33 | 2 3 | readdcld | |- ( ph -> ( B + T ) e. RR ) |
| 34 | 33 | 3ad2ant1 | |- ( ( ph /\ z e. ( A [,] B ) /\ x = ( z + T ) ) -> ( B + T ) e. RR ) |
| 35 | elicc2 | |- ( ( ( A + T ) e. RR /\ ( B + T ) e. RR ) -> ( ( z + T ) e. ( ( A + T ) [,] ( B + T ) ) <-> ( ( z + T ) e. RR /\ ( A + T ) <_ ( z + T ) /\ ( z + T ) <_ ( B + T ) ) ) ) |
|
| 36 | 32 34 35 | syl2anc | |- ( ( ph /\ z e. ( A [,] B ) /\ x = ( z + T ) ) -> ( ( z + T ) e. ( ( A + T ) [,] ( B + T ) ) <-> ( ( z + T ) e. RR /\ ( A + T ) <_ ( z + T ) /\ ( z + T ) <_ ( B + T ) ) ) ) |
| 37 | 30 36 | mpbird | |- ( ( ph /\ z e. ( A [,] B ) /\ x = ( z + T ) ) -> ( z + T ) e. ( ( A + T ) [,] ( B + T ) ) ) |
| 38 | 14 37 | eqeltrd | |- ( ( ph /\ z e. ( A [,] B ) /\ x = ( z + T ) ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) |
| 39 | 38 | 3exp | |- ( ph -> ( z e. ( A [,] B ) -> ( x = ( z + T ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ ( x e. CC /\ E. z e. ( A [,] B ) x = ( z + T ) ) ) -> ( z e. ( A [,] B ) -> ( x = ( z + T ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) ) ) |
| 41 | 12 13 40 | rexlimd | |- ( ( ph /\ ( x e. CC /\ E. z e. ( A [,] B ) x = ( z + T ) ) ) -> ( E. z e. ( A [,] B ) x = ( z + T ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) ) |
| 42 | 7 41 | mpd | |- ( ( ph /\ ( x e. CC /\ E. z e. ( A [,] B ) x = ( z + T ) ) ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) |
| 43 | 6 42 | sylan2b | |- ( ( ph /\ x e. { w e. CC | E. z e. ( A [,] B ) w = ( z + T ) } ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) |
| 44 | 31 | adantr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) e. RR ) |
| 45 | 33 | adantr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. RR ) |
| 46 | simpr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) |
|
| 47 | eliccre | |- ( ( ( A + T ) e. RR /\ ( B + T ) e. RR /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. RR ) |
|
| 48 | 44 45 46 47 | syl3anc | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. RR ) |
| 49 | 48 | recnd | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. CC ) |
| 50 | 1 | adantr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A e. RR ) |
| 51 | 2 | adantr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> B e. RR ) |
| 52 | 3 | adantr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> T e. RR ) |
| 53 | 48 52 | resubcld | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x - T ) e. RR ) |
| 54 | 1 | recnd | |- ( ph -> A e. CC ) |
| 55 | 3 | recnd | |- ( ph -> T e. CC ) |
| 56 | 54 55 | pncand | |- ( ph -> ( ( A + T ) - T ) = A ) |
| 57 | 56 | eqcomd | |- ( ph -> A = ( ( A + T ) - T ) ) |
| 58 | 57 | adantr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A = ( ( A + T ) - T ) ) |
| 59 | elicc2 | |- ( ( ( A + T ) e. RR /\ ( B + T ) e. RR ) -> ( x e. ( ( A + T ) [,] ( B + T ) ) <-> ( x e. RR /\ ( A + T ) <_ x /\ x <_ ( B + T ) ) ) ) |
|
| 60 | 44 45 59 | syl2anc | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x e. ( ( A + T ) [,] ( B + T ) ) <-> ( x e. RR /\ ( A + T ) <_ x /\ x <_ ( B + T ) ) ) ) |
| 61 | 46 60 | mpbid | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x e. RR /\ ( A + T ) <_ x /\ x <_ ( B + T ) ) ) |
| 62 | 61 | simp2d | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) <_ x ) |
| 63 | 44 48 52 62 | lesub1dd | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( A + T ) - T ) <_ ( x - T ) ) |
| 64 | 58 63 | eqbrtrd | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A <_ ( x - T ) ) |
| 65 | 61 | simp3d | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x <_ ( B + T ) ) |
| 66 | 48 45 52 65 | lesub1dd | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x - T ) <_ ( ( B + T ) - T ) ) |
| 67 | 2 | recnd | |- ( ph -> B e. CC ) |
| 68 | 67 55 | pncand | |- ( ph -> ( ( B + T ) - T ) = B ) |
| 69 | 68 | adantr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) - T ) = B ) |
| 70 | 66 69 | breqtrd | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x - T ) <_ B ) |
| 71 | 50 51 53 64 70 | eliccd | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x - T ) e. ( A [,] B ) ) |
| 72 | 55 | adantr | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> T e. CC ) |
| 73 | 49 72 | npcand | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x - T ) + T ) = x ) |
| 74 | 73 | eqcomd | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x = ( ( x - T ) + T ) ) |
| 75 | oveq1 | |- ( z = ( x - T ) -> ( z + T ) = ( ( x - T ) + T ) ) |
|
| 76 | 75 | rspceeqv | |- ( ( ( x - T ) e. ( A [,] B ) /\ x = ( ( x - T ) + T ) ) -> E. z e. ( A [,] B ) x = ( z + T ) ) |
| 77 | 71 74 76 | syl2anc | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> E. z e. ( A [,] B ) x = ( z + T ) ) |
| 78 | 49 77 6 | sylanbrc | |- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. { w e. CC | E. z e. ( A [,] B ) w = ( z + T ) } ) |
| 79 | 43 78 | impbida | |- ( ph -> ( x e. { w e. CC | E. z e. ( A [,] B ) w = ( z + T ) } <-> x e. ( ( A + T ) [,] ( B + T ) ) ) ) |
| 80 | 79 | eqrdv | |- ( ph -> { w e. CC | E. z e. ( A [,] B ) w = ( z + T ) } = ( ( A + T ) [,] ( B + T ) ) ) |
| 81 | 80 | eqcomd | |- ( ph -> ( ( A + T ) [,] ( B + T ) ) = { w e. CC | E. z e. ( A [,] B ) w = ( z + T ) } ) |