This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iblpos . (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblrelem.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| iblpos.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| Assertion | iblposlem | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblrelem.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 2 | iblpos.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 3 | 1 | le0neg2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ - 𝐵 ≤ 0 ) ) |
| 4 | 2 3 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ≤ 0 ) |
| 5 | 4 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ≤ 0 ) |
| 6 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ - 𝐵 ) | |
| 7 | 1 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 8 | 7 | renegcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ ) |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | letri3 | ⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐵 = 0 ↔ ( - 𝐵 ≤ 0 ∧ 0 ≤ - 𝐵 ) ) ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → ( - 𝐵 = 0 ↔ ( - 𝐵 ≤ 0 ∧ 0 ≤ - 𝐵 ) ) ) |
| 12 | 5 6 11 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 = 0 ) |
| 13 | 12 | ifeq1da | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , 0 , 0 ) ) |
| 14 | ifid | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , 0 , 0 ) = 0 | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = 0 ) |
| 16 | 15 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 17 | fconstmpt | ⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) | |
| 18 | 16 17 | eqtr4di | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( ℝ × { 0 } ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) ) |
| 20 | itg20 | ⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 21 | 19 20 | eqtrdi | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = 0 ) |