This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iblpos . (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblrelem.1 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| iblpos.2 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
||
| Assertion | iblposlem | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblrelem.1 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 2 | iblpos.2 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
|
| 3 | 1 | le0neg2d | |- ( ( ph /\ x e. A ) -> ( 0 <_ B <-> -u B <_ 0 ) ) |
| 4 | 2 3 | mpbid | |- ( ( ph /\ x e. A ) -> -u B <_ 0 ) |
| 5 | 4 | adantrr | |- ( ( ph /\ ( x e. A /\ 0 <_ -u B ) ) -> -u B <_ 0 ) |
| 6 | simprr | |- ( ( ph /\ ( x e. A /\ 0 <_ -u B ) ) -> 0 <_ -u B ) |
|
| 7 | 1 | adantrr | |- ( ( ph /\ ( x e. A /\ 0 <_ -u B ) ) -> B e. RR ) |
| 8 | 7 | renegcld | |- ( ( ph /\ ( x e. A /\ 0 <_ -u B ) ) -> -u B e. RR ) |
| 9 | 0re | |- 0 e. RR |
|
| 10 | letri3 | |- ( ( -u B e. RR /\ 0 e. RR ) -> ( -u B = 0 <-> ( -u B <_ 0 /\ 0 <_ -u B ) ) ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( ph /\ ( x e. A /\ 0 <_ -u B ) ) -> ( -u B = 0 <-> ( -u B <_ 0 /\ 0 <_ -u B ) ) ) |
| 12 | 5 6 11 | mpbir2and | |- ( ( ph /\ ( x e. A /\ 0 <_ -u B ) ) -> -u B = 0 ) |
| 13 | 12 | ifeq1da | |- ( ph -> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) = if ( ( x e. A /\ 0 <_ -u B ) , 0 , 0 ) ) |
| 14 | ifid | |- if ( ( x e. A /\ 0 <_ -u B ) , 0 , 0 ) = 0 |
|
| 15 | 13 14 | eqtrdi | |- ( ph -> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) = 0 ) |
| 16 | 15 | mpteq2dv | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) = ( x e. RR |-> 0 ) ) |
| 17 | fconstmpt | |- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
|
| 18 | 16 17 | eqtr4di | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) = ( RR X. { 0 } ) ) |
| 19 | 18 | fveq2d | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) |
| 20 | itg20 | |- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
|
| 21 | 19 20 | eqtrdi | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) = 0 ) |