This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubcan | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) = ( A -h C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
| 3 | hvsubval | |- ( ( A e. ~H /\ C e. ~H ) -> ( A -h C ) = ( A +h ( -u 1 .h C ) ) ) |
|
| 4 | 3 | 3adant2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A -h C ) = ( A +h ( -u 1 .h C ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) = ( A -h C ) <-> ( A +h ( -u 1 .h B ) ) = ( A +h ( -u 1 .h C ) ) ) ) |
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | hvmulcl | |- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
|
| 8 | 6 7 | mpan | |- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
| 9 | hvmulcl | |- ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H ) |
|
| 10 | 6 9 | mpan | |- ( C e. ~H -> ( -u 1 .h C ) e. ~H ) |
| 11 | hvaddcan | |- ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H /\ ( -u 1 .h C ) e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) = ( A +h ( -u 1 .h C ) ) <-> ( -u 1 .h B ) = ( -u 1 .h C ) ) ) |
|
| 12 | 10 11 | syl3an3 | |- ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) = ( A +h ( -u 1 .h C ) ) <-> ( -u 1 .h B ) = ( -u 1 .h C ) ) ) |
| 13 | 8 12 | syl3an2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) = ( A +h ( -u 1 .h C ) ) <-> ( -u 1 .h B ) = ( -u 1 .h C ) ) ) |
| 14 | neg1ne0 | |- -u 1 =/= 0 |
|
| 15 | 6 14 | pm3.2i | |- ( -u 1 e. CC /\ -u 1 =/= 0 ) |
| 16 | hvmulcan | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) = ( -u 1 .h C ) <-> B = C ) ) |
|
| 17 | 15 16 | mp3an1 | |- ( ( B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) = ( -u 1 .h C ) <-> B = C ) ) |
| 18 | 17 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) = ( -u 1 .h C ) <-> B = C ) ) |
| 19 | 5 13 18 | 3bitrd | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) = ( A -h C ) <-> B = C ) ) |