This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubcan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) = ( 𝐵 −ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubcl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐶 −ℎ 𝐴 ) ∈ ℋ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 −ℎ 𝐴 ) ∈ ℋ ) |
| 3 | hvsubcl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 −ℎ 𝐵 ) ∈ ℋ ) | |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 −ℎ 𝐵 ) ∈ ℋ ) |
| 5 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 6 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 7 | 5 6 | pm3.2i | ⊢ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) |
| 8 | hvmulcan | ⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 𝐶 −ℎ 𝐴 ) ∈ ℋ ∧ ( 𝐶 −ℎ 𝐵 ) ∈ ℋ ) → ( ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) ↔ ( 𝐶 −ℎ 𝐴 ) = ( 𝐶 −ℎ 𝐵 ) ) ) | |
| 9 | 7 8 | mp3an1 | ⊢ ( ( ( 𝐶 −ℎ 𝐴 ) ∈ ℋ ∧ ( 𝐶 −ℎ 𝐵 ) ∈ ℋ ) → ( ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) ↔ ( 𝐶 −ℎ 𝐴 ) = ( 𝐶 −ℎ 𝐵 ) ) ) |
| 10 | 2 4 9 | syl2anc | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) ↔ ( 𝐶 −ℎ 𝐴 ) = ( 𝐶 −ℎ 𝐵 ) ) ) |
| 11 | hvnegdi | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( 𝐴 −ℎ 𝐶 ) ) | |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( 𝐴 −ℎ 𝐶 ) ) |
| 13 | hvnegdi | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐶 ) ) | |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐶 ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐵 −ℎ 𝐶 ) ) ) |
| 16 | hvsubcan | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 −ℎ 𝐴 ) = ( 𝐶 −ℎ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 17 | 10 15 16 | 3bitr3d | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) = ( 𝐵 −ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 18 | 17 | 3coml | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) = ( 𝐵 −ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |