This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddcan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 +ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) ) | |
| 2 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 +ℎ 𝐶 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ) ) |
| 4 | 3 | bibi1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ) ) |
| 7 | eqeq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 = 𝐶 ↔ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) = 𝐶 ) ) | |
| 8 | 6 7 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ↔ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) = 𝐶 ) ) ) |
| 9 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) ) |
| 11 | eqeq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) = 𝐶 ↔ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) | |
| 12 | 10 11 | bibi12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐶 ) ↔ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) = 𝐶 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ↔ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) ) |
| 13 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 14 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 15 | ifhvhv0 | ⊢ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ∈ ℋ | |
| 16 | 13 14 15 | hvaddcani | ⊢ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ↔ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) |
| 17 | 4 8 12 16 | dedth3h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |