This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsub4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐵 −ℎ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) | |
| 2 | hvaddcl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐶 +ℎ 𝐷 ) ∈ ℋ ) | |
| 3 | hvsubval | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐶 +ℎ 𝐷 ) ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ 𝐷 ) ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ 𝐷 ) ) ) ) |
| 5 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) | |
| 6 | 5 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 7 | hvsubval | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐵 −ℎ 𝐷 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) | |
| 8 | 7 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐵 −ℎ 𝐷 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 9 | 6 8 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐵 −ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 10 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 11 | ax-hvdistr1 | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐷 ) ) ) | |
| 12 | 10 11 | mp3an1 | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( - 1 ·ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 15 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 16 | 10 15 | mpan | ⊢ ( 𝐶 ∈ ℋ → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) |
| 17 | 16 | anim2i | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) ) |
| 18 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐷 ∈ ℋ ) → ( - 1 ·ℎ 𝐷 ) ∈ ℋ ) | |
| 19 | 10 18 | mpan | ⊢ ( 𝐷 ∈ ℋ → ( - 1 ·ℎ 𝐷 ) ∈ ℋ ) |
| 20 | 19 | anim2i | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐷 ) ∈ ℋ ) ) |
| 21 | 17 20 | anim12i | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐷 ) ∈ ℋ ) ) ) |
| 22 | 21 | an4s | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐷 ) ∈ ℋ ) ) ) |
| 23 | hvadd4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐷 ) ∈ ℋ ) ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 25 | 14 24 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 26 | 9 25 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐵 −ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ 𝐷 ) ) ) ) |
| 27 | 4 26 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐵 −ℎ 𝐷 ) ) ) |