This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddsub4 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) = ( C +h D ) <-> ( A -h C ) = ( D -h B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( A +h B ) e. ~H ) |
| 3 | hvaddcl | |- ( ( C e. ~H /\ D e. ~H ) -> ( C +h D ) e. ~H ) |
|
| 4 | 3 | adantl | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( C +h D ) e. ~H ) |
| 5 | hvaddcl | |- ( ( C e. ~H /\ B e. ~H ) -> ( C +h B ) e. ~H ) |
|
| 6 | 5 | ancoms | |- ( ( B e. ~H /\ C e. ~H ) -> ( C +h B ) e. ~H ) |
| 7 | 6 | ad2ant2lr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( C +h B ) e. ~H ) |
| 8 | hvsubcan2 | |- ( ( ( A +h B ) e. ~H /\ ( C +h D ) e. ~H /\ ( C +h B ) e. ~H ) -> ( ( ( A +h B ) -h ( C +h B ) ) = ( ( C +h D ) -h ( C +h B ) ) <-> ( A +h B ) = ( C +h D ) ) ) |
|
| 9 | 2 4 7 8 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A +h B ) -h ( C +h B ) ) = ( ( C +h D ) -h ( C +h B ) ) <-> ( A +h B ) = ( C +h D ) ) ) |
| 10 | simpr | |- ( ( A e. ~H /\ B e. ~H ) -> B e. ~H ) |
|
| 11 | 10 | anim2i | |- ( ( C e. ~H /\ ( A e. ~H /\ B e. ~H ) ) -> ( C e. ~H /\ B e. ~H ) ) |
| 12 | 11 | ancoms | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( C e. ~H /\ B e. ~H ) ) |
| 13 | hvsub4 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ B e. ~H ) ) -> ( ( A +h B ) -h ( C +h B ) ) = ( ( A -h C ) +h ( B -h B ) ) ) |
|
| 14 | 12 13 | syldan | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( ( A +h B ) -h ( C +h B ) ) = ( ( A -h C ) +h ( B -h B ) ) ) |
| 15 | hvsubid | |- ( B e. ~H -> ( B -h B ) = 0h ) |
|
| 16 | 15 | ad2antlr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( B -h B ) = 0h ) |
| 17 | 16 | oveq2d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( ( A -h C ) +h ( B -h B ) ) = ( ( A -h C ) +h 0h ) ) |
| 18 | hvsubcl | |- ( ( A e. ~H /\ C e. ~H ) -> ( A -h C ) e. ~H ) |
|
| 19 | ax-hvaddid | |- ( ( A -h C ) e. ~H -> ( ( A -h C ) +h 0h ) = ( A -h C ) ) |
|
| 20 | 18 19 | syl | |- ( ( A e. ~H /\ C e. ~H ) -> ( ( A -h C ) +h 0h ) = ( A -h C ) ) |
| 21 | 20 | adantlr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( ( A -h C ) +h 0h ) = ( A -h C ) ) |
| 22 | 14 17 21 | 3eqtrd | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( ( A +h B ) -h ( C +h B ) ) = ( A -h C ) ) |
| 23 | 22 | adantrr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) -h ( C +h B ) ) = ( A -h C ) ) |
| 24 | simpl | |- ( ( C e. ~H /\ D e. ~H ) -> C e. ~H ) |
|
| 25 | 24 | anim1i | |- ( ( ( C e. ~H /\ D e. ~H ) /\ B e. ~H ) -> ( C e. ~H /\ B e. ~H ) ) |
| 26 | hvsub4 | |- ( ( ( C e. ~H /\ D e. ~H ) /\ ( C e. ~H /\ B e. ~H ) ) -> ( ( C +h D ) -h ( C +h B ) ) = ( ( C -h C ) +h ( D -h B ) ) ) |
|
| 27 | 25 26 | syldan | |- ( ( ( C e. ~H /\ D e. ~H ) /\ B e. ~H ) -> ( ( C +h D ) -h ( C +h B ) ) = ( ( C -h C ) +h ( D -h B ) ) ) |
| 28 | hvsubid | |- ( C e. ~H -> ( C -h C ) = 0h ) |
|
| 29 | 28 | ad2antrr | |- ( ( ( C e. ~H /\ D e. ~H ) /\ B e. ~H ) -> ( C -h C ) = 0h ) |
| 30 | 29 | oveq1d | |- ( ( ( C e. ~H /\ D e. ~H ) /\ B e. ~H ) -> ( ( C -h C ) +h ( D -h B ) ) = ( 0h +h ( D -h B ) ) ) |
| 31 | hvsubcl | |- ( ( D e. ~H /\ B e. ~H ) -> ( D -h B ) e. ~H ) |
|
| 32 | hvaddlid | |- ( ( D -h B ) e. ~H -> ( 0h +h ( D -h B ) ) = ( D -h B ) ) |
|
| 33 | 31 32 | syl | |- ( ( D e. ~H /\ B e. ~H ) -> ( 0h +h ( D -h B ) ) = ( D -h B ) ) |
| 34 | 33 | adantll | |- ( ( ( C e. ~H /\ D e. ~H ) /\ B e. ~H ) -> ( 0h +h ( D -h B ) ) = ( D -h B ) ) |
| 35 | 27 30 34 | 3eqtrd | |- ( ( ( C e. ~H /\ D e. ~H ) /\ B e. ~H ) -> ( ( C +h D ) -h ( C +h B ) ) = ( D -h B ) ) |
| 36 | 35 | ancoms | |- ( ( B e. ~H /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( C +h D ) -h ( C +h B ) ) = ( D -h B ) ) |
| 37 | 36 | adantll | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( C +h D ) -h ( C +h B ) ) = ( D -h B ) ) |
| 38 | 23 37 | eqeq12d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A +h B ) -h ( C +h B ) ) = ( ( C +h D ) -h ( C +h B ) ) <-> ( A -h C ) = ( D -h B ) ) ) |
| 39 | 9 38 | bitr3d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) = ( C +h D ) <-> ( A -h C ) = ( D -h B ) ) ) |